

Installation and Operations Manual

150 W, 300 W, & 700 W (12 V, 24 V, & 48 V) Models, 1,000 W & 1,250 W, (24 V & 48 V) Models,

2,500 W (48 V Only) Models

(120 V / 60 Hz, 230 V / 50 Hz, 127 V / 60 Hz, and 220 V / 60 Hz)

October 2022 (Rev 0 Draft 10)

About MorningStar:

With well over 4 million products sold in over 100 countries since 1993—functioning in some of the most extreme environments and mission-critical applications in the world—Morningstar Corporation can truly claim to be "the leading supplier of solar controllers and inverters." That success is why Morningstar has had staying power and stable management for over 27 years, along with the lowest employee turnover rate.

- Smarter digital design has been pioneered for solar components, for faster, more agile processing onboard. This allows for the maximum performance from the hardware.
- Advanced thermal engineering is used to eliminate cooling fans—the weak link in competitors' products.
- Finally, internal electronics are laid out for performance and longevity instead of economics—designing for the long-term in order to achieve the industry's lowest hardware failure rates.

For additional information about Morningstar Corporation, go to: <u>www.morningstarcorp.com</u>

Disclaimer:

The specifications and descriptions contained in this document are verified to be as accurate as possible at the time of publication. However, because Morningstar Corporation's products and their performance are constantly evolving, Morningstar reserves the right to make product or documentation modifications at any time, with or without notice. Due to the wide range of applications where this product can be used, details may vary by product version, geography, and site application.

To ensure that you have the most current version of this document, go to: <u>www.morningstarcorp.com/support</u>.

To communicate any inaccuracies or omissions in this document, please fill out a contact form at: www.morningstarcorp.com/support.

Reference document #: MS-003650. Rev 0 Draft 10

Contact Information:

Morningstar Corporation

8 Pheasant Run Newtown, Pennsylvania 18940 USA

Email:	support@morningstarcorp.com		
Website:	www.morningstarcorp.com		
Service and Support:	www.morningstarcorp.com/support		
Phone:	+1 215.321.4457		

Copyright 2022:

This document and its contents are protected by trade secrets, patent, copyright, and other applicable laws. All rights are reserved. Unauthorized use is illegal.

SureSine[™] is a trademark of Morningstar Corporation

MODBUS™ and MODBUS TCP/IP™ are trademarks of Modbus IDA. www.modbus-ida.org

© 2022 Morningstar Corporation. All rights reserved.

IMPORTANT SAFETY INSTRUCTIONS

SAVE THESE INSTRUCTIONS - This manual contains important safety, installation, and operating instructions for the Morningstar SureSine Inverter.

The SureSine produces voltages and currents capable of causing severe injury or death. Extreme caution must be taken when installing and using the SureSine.

The following symbols are used throughout this manual to indicate potentially dangerous conditions or important safety instructions.

<u>k</u>	WARNING : Indicates a potentially dangerous condition. Failure to observe this notice could result in severe personal injury or death.
	CAUTION: Indicates a critical procedure for safe and proper operation of the SureSine. Use extreme caution when performing this task. Failure to observe this notice could result in personal injury or equipment damage.
(F	NOTE: Indicates a procedure or function that is important to the safe and proper operation of the SureSine Inverter.

GENERAL SAFETY INFORMATION

Throughout this manual, NEC guidance has been provided in order to meet general safety requirements and inform best installation practices. It is the installer's responsibility to ensure that the Installation complies with all local safety and code requirements.

- Read all of the instructions and cautions in the manual before starting the installation.
- Ensure that battery power has been disconnected BEFORE installing, servicing, or removing the SureSine Inverter.
- Do not allow water to enter the SureSine.
- Avoid wearing jewelry while installing this equipment.
- Do not smoke near the battery bank.
- Ensure power connections remain tight to avoid excessive heating from a loose connection.
- Recycle the battery when it is replaced.

WIRE AND CABLE SAFETY

Proper wire type and size is required for all installations. Use only UL-listed Class B or Class C wire rated for 300 volts and 75°C or higher. Use stranded wire for the battery circuit and solid or stranded wire for the AC and Ground circuits.

Copper wire is recommended instead of aluminum due to its ease of use, superior conductivity, strength and thermal expansion properties.

WARNING: SHOCK HAZARD

- Installations must be performed by a qualified person trained in electrical safety procedures (minimum qualification).
- All wiring must comply with local electric code requirements.
- Ensure all sources of **input** are disconnected before connecting **ANY** cabling.

WARNING: RISK OF FIRE

All over-current protection devices and wiring must be sized properly, in accordance with US National Electric Code (NEC) or the local regulations of the country of installation.

WARNING: FIRE HAZARD

A risk of fire may exist if a 120 Vac power source is wired incorrectly to 120/240 Vac panel containing multi-wire branch circuits.

MOUNTING, CLEARANCE, AND LOCATION SAFETY

WARNING: EXPLOSION/FIRE HAZARD

Do not install in a confined area where battery gases can accumulate. Battery gases can create an explosion or fire hazard if ignited by a spark. Ensure the enclosure is ventilated well enough to disperse any accumulated gases.

Do not install over an easily combustible surface, since the heat sink may get hot under certain operating conditions.

CAUTION: EQUIPMENT DAMAGE

- Do not mount in zero-clearance compartment. Overheating may result. Ensure adequate space around the components to ensure sufficient ventilation around the equipment.
- Locate the SureSine on a surface that is protected from direct sun, high temperatures, corrosive fumes, and water.
- Ensure the mounting surface is strong enough to support the weight of the inverter as well as any other devices that may be attached to it. It may be necessary to reinforce the surface with plywood to provide additional support for the equipment.

CAUTION: HOT SURFACE/BURN HAZARD

The SureSine inverter models 700 Watts to 2,500 W can become very hot. Install the SureSine so that it cannot be accidentally touched by anyone or anything.

BATTERY SAFETY INFORMATION

WARNING: SHOCK HAZARD

- Servicing of batteries should be performed, or supervised, by personnel knowledgeable about batteries, and the proper safety precautions.
- Have someone nearby to assist in case of an accident.
- Carefully read the battery manufacturer's instructions before installing / connecting to, or removing batteries from the SureSine Inverter.
- A battery can present a risk of electrical shock or burn from large amounts of shortcircuit current, fire, or explosion from vented gases. Observe proper precautions.
- Remove watches, rings, jewelry and other metal objects before working with batteries.
- Use tools with insulated handles and avoid placing tools or metal objects on top of batteries.
- Disconnect charging source prior to connecting or disconnecting battery terminals.
- Determine if battery is inadvertently grounded. If so, remove the source of contact with ground. Contact with any part of a grounded battery can result in electrical shock. The likelihood of such a shock can be reduced if battery grounds are removed during installation and maintenance (applicable to equipment and remote battery supplies not having a grounded supply circuit).

WARNING: RISK OF EXPLOSION

- Explosive battery gases can be present during charging. Be certain there is enough ventilation to release the gases.
- Proper disposal of batteries is required. Do not dispose of batteries in fire. Refer to local regulations or codes for requirements. Recycle the battery when it is replaced.
- Never smoke in the battery area.

WARNING: CORROSION HAZARD/TOXIC FUMES

- Do not open or mutilate batteries. Released electrolyte is harmful to skin and may be toxic if inhaled.
- Be very careful when working with large lead-acid batteries. Wear eye protection and have fresh water available in case there is contact with the battery acid.
- Wear rubber gloves and boots.
- If battery acid comes into contact with the skin, wash with soap and water. If the acid contacts the eye, flood with fresh water and get medical attention.
- Recycle the battery when it is replaced.

BATTERY SAFETY INFORMATION

(Continued)

CAUTION: EQUIPMENT DAMAGE
 Ensure the battery voltage matches the DC voltage requirements of the model of SureSine inverter to be installed.
 Ensure the battery bank consists of batteries of the same type, make and age.
 Ensure the battery electrolyte level is correct before starting charging. Do not attempt to charge a frozen battery.
 Ensure that the charging equipment implemented in the system meets the charging requirements for the battery bank and varied charging.
 The SureSine Low Voltage Disconnect (LVD) and Low Voltage Reconnect (LVR) presets are generally designed for lead acid batteries. Use custom LVD and LVR settings required for the type of battery in the system and minimum desired state of charge (SOC). Note that some battery types may not be compatible.

CERTIFICATIONS:

North American Certifications

- Complies with UL 1741, 62109 and CSA-C22.2 No. 107.1-01
- Complies with IEC 62109-1: 2010
- Complies with FCC Article 15, Class B
- Complies with ICES-003 Issue 4, Feb 2004 (Class B)
- Complies with the US National Electrical Code

European LVD Directive:

- EN 60335-1:2002 Safety
- EN 60335-2-29:2005 Safety
- EN/IEC 62109-1:2010 Safety of Power Converters in PV Systems
- IEC/EN 62109-1, IEC/EN 62109-2, IEC/EN 61000-6-1, IEC/EN 61000-6-2, IEC/EN 61000-6-3, IEC/EN 61000-6-4, IEC/EN 55032, IEC/EN55011

European EMC Directive:

- EN 61000-6-2:2005 EMC Immunity, Industrial Environments
- EN 55022:2007 (Class B) EMC Emissions

Table of Contents

1.0	Introd	luction	1
	1.1	Features	
	1.2	Components of the 150 W & 300 W Models	2
	1.3	Components of the 700 W Models	
	1.4	Components of the 1,000 W to 2,500 W Models	4
	1.5	Dimensions of the 150 W & 300 W Models	
	1.6	Dimensions of the 700 W to 2,500 W Models	6
2.0	المعمدا	ation	
2.0			
	2.1	Required Tools	
	2.2	Additional Hardware Requirements	
	2.3	Mounting	
		2.3.1 Safety Considerations for Mounting	
		2.3.2 Mounting Procedure	
	2.4	Adjusting Settings	
		2.4.1 DIP Switch Location	
		2.4.2 DIP Switch Configuration Options	12
	2.5	Terminal Block Installation for Remote Switch or Communications Wiring	13
	2.6	Remote Switch Installation (Optional)	14
	2.7	Auxiliary Power (Optional)	
	2.8	Inverter Wiring	
		2.8.1 Terminal Torque Requirements	
		2.8.2 Over-current Protection Requirements	
		2.8.3 DC and AC Conductor Sizing Requirements	
		2.8.4 Grounding and Bonding Requirements	
		2.8.5 Grounding Connections	
		2.8.6 DC Connections	
		2.8.7 AC Connections	
		2.8.8 AC Wiring	
	2.9	Check Wiring and Power Up	
3.0		ation	
	3.1	LED Indications	
	3.2	AC Output Mode Switch Operation	31
	3.3	Protections	
		3.3.1 Low Voltage Disconnect (LVD)	31
		3.3.2 High Voltage Disconnect (HVD)	32
		3.3.3 High Temperature Disconnect (HTD)	32
		3.3.4 Over Current and Short Circuit Protection (Critical Fault)	32
4.0	Comm	nunication Options	22
4.0	4.1	Bluetooth	
	4.1		
	4.0	4.1.2 SureSine Utility App	35
	4.2	Ethernet (for Modbus™ TCP/IP)	
		4.2.1 To Connect to the Internet using Modbus Protocols	
	4.3	EIA-485 Device Communication	
		4.3.1 To Connect the SureSine Inverter to an EIA-485 Device	
	4.4	USB Port	
		4.4.1 To Connect to the USB Port	
	4.5	MS-CAN (Future Feature)	
		4.5.1 To Connect the SureSine to another Morningstar Device	
		4.5.2 To Connect the SureSine to a Morningstar Network	41

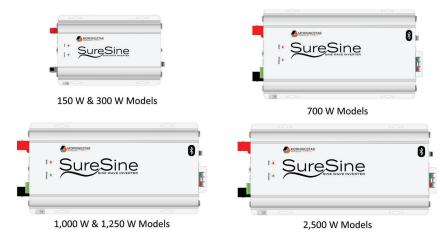
5.0	Firmwa	are Update Procedure	42
6.0	Specifi	cations	43
Appen	dix A:	DC Battery Wire Sizing	47
Appen	dix B:	DC Voltage Drop Tables	49
	B.1 B.2	Voltage Drop Chart for 75°C or 90°C Stranded Copper Wire (Feet), 12 Volt System Voltage Drop Chart for 75°C or 90°C Stranded Copper Wire (Meters),	
		12 Volt System	50
Appen	dix C:	Warranty	51
	C.1	Claim Procedure	
	C.2	Warranty Exclusions And Limitations	51

List of Figures

Figure 1: SureSine Inverters Series1
Figure 2: SureSine Inverter Features (150 W & 300 W Models)2
Figure 3: SureSine Inverter Features (700 W Models)
Figure 4: SureSine Inverter Features (1,000 W to 2,500 W Models)4
Figure 5: Dimensions - 150 W to 300 W Models5
Figure 6: Dimensions - 700 W to 2,500 W Models6
Figure 7: Mounting Orientation8
Figure 8: Mounting Holes
Figure 9: Minimum Clearance and Ventilation Requirements9
Figure 10: DIP Switches11
Figure 11: DIP Switch Configurations11
Figure 12: Terminal Block Installation13
Figure 13: Remote Switch Wiring for 150 W to 300 W Models14
Figure 14: Remote Switch Wiring for 700 W to 2,500 W Models14
Figure 15: Auxiliary Power Terminals on 700 W to 2,500 W Models15
Figure 16: Internal Grounded Neutral vs. External Grounded Neutral (Internal Neutral Ground Bond removed)20
Figure 17: DC Connections on 150 W & 300 W Models with Negative Grounding25
Figure 18: DC Connections on 150 W & 300 W Models with Positive Grounding25
Figure 19: DC Connections on 700 W to 2,500 W Models with Negative Grounding26
Figure 20: DC Connections on 700 W to 2,500 W Models with Positive Grounding26
Figure 21: AC Connections on 150 W, 300 W, & 700 W Models (with Factory Wiring)27
Figure 22: AC Wiring for 150 W or 300 W Models
Figure 23: AC Wiring for 700 W, 1,000 W, 1,250 W or 2,500 W Models
Figure 24: AC Output Mode Operation and Bluetooth Activation
Figure 25: Communication Port Locations
Figure 26: Communication using Bluetooth
Figure 27: SureSine Utility App (Main Dashboard)
Figure 28: Communication using Ethernet
Figure 29: EIA-485/RS-232 Communications Adapter (RSC-1)
Figure 30: Connecting to an EIA-485 Device
Figure 31: Auxiliary Power Connections (700 W, 1,000 W, 1,250 W or 2,500 W Models ONLY).38
Figure 32: USB Port Locations
Figure 33: Communication Using MS-CAN40
Figure 34: Communication Using MS-CAN with Multiple Devices

List of Tables

Table 1: DIP Switch Configuration	
Table 2: Low Voltage Disconnect Settings (DIP 4 & 5)	12
Table 3: Terminal Torque Requirements	16
Table 4: DC Battery Circuit Breaker/Fuse Size	17
Table 5: AC Circuit Breaker/Fuse Size	18
Table 6: Minimum Battery Cable Size - 75°C rated Copper	18
Table 7: Minimum AC Output Wire Size - 75°C rated Copper	19
Table 8: Minimum Wire Sizes for Copper Ground Cable	22
Table 9: LED Indications	30
Table 10: Specifications for the SureSine 150 and SureSine 300	43
Table 11: Specifications for the SureSine 700 and SureSine 1000	44
Table 12: Specifications for the SureSine 1250 and SureSine 2500	45
Table 13: Common Specifications for all Models	46
Table 14: Minimum Battery Wire Sizes - 75°C Rated Stranded Copper	47
Table 15: Minimum Battery Wire Sizes - 90°C Rated Stranded Copper	48
Table 16: Celsius-to-Fahrenheit Conversions	48
Table 17: Maximum 1-way Distance (Feet), 2% Voltage Drop Chart for 75°C or 90°CStranded Copper Wire, 12-Volt System	49
Table 18: Maximum 1-way Distance (Meters), 2% Voltage Drop Chart for 75°C or 90°CStranded Copper Wire, 12-Volt System	50

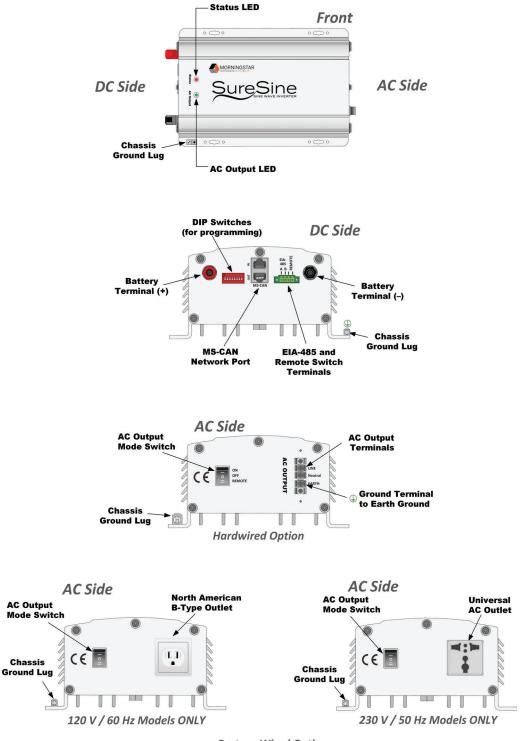

1.0 INTRODUCTION

The SureSine Inverter is a pure sine wave inverter for industrial and residential DCto-AC applications which require high quality power. The SureSine can be used as a standalone system or as an accessory to larger systems that may include charging sources and energy storage systems.

1.1 Features

SureSine features include:

- Pure sine wave conversion produces a highly efficient AC grid-quality power.
- DC power to AC power conversion to the following output voltages:
 - 120-volt/60 Hz. 220-volt/60 Hz.
 - 127-volt/60 Hz. 230-volt/50 Hz
- Supports 12-volt, 24-volt, or 48-volt DC systems (dependent on model purchased).
- Extensive electronic protections ensure protection against faults and user mistakes such as short circuits, overloads, high temperatures, and low voltage disconnects. Recovery from most faults is automatic.
- Two LEDs provide important information to the user regarding battery status and AC output.
- Remote ON/OFF capability.
- Eight DIP switches provide easy adjustment of several system parameters.
- Multiple communication options.
 - Mobile devices can connect through Bluetooth
 - Other network devices can connect through Ethernet and/or EIA-485
 - FUTURE FEATURE: The SureSine Inverter can pair with other Morningstar products that feature MS-CAN Communication for control, adjustments, and monitoring performance



1.2 Components of the 150 W & 300 W Models

Figure 2 shows the components included with the 150 and 300 W models.

Factory-Wired Options

Figure 2: SureSine Inverter Features (150 W & 300 W Models)

1.3 Components of the 700 W Models

Figure 3 shows the components included with the 700 W models.

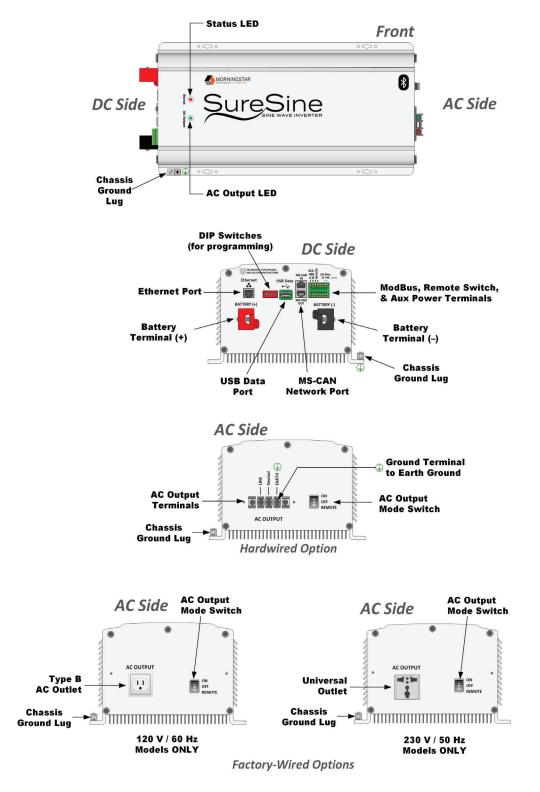


Figure 3: SureSine Inverter Features (700 W Models)

1.4 Components of the 1,000 W to 2,500 W Models

Figure 4 shows the components included with the 1,000 W to 2,500 W models.

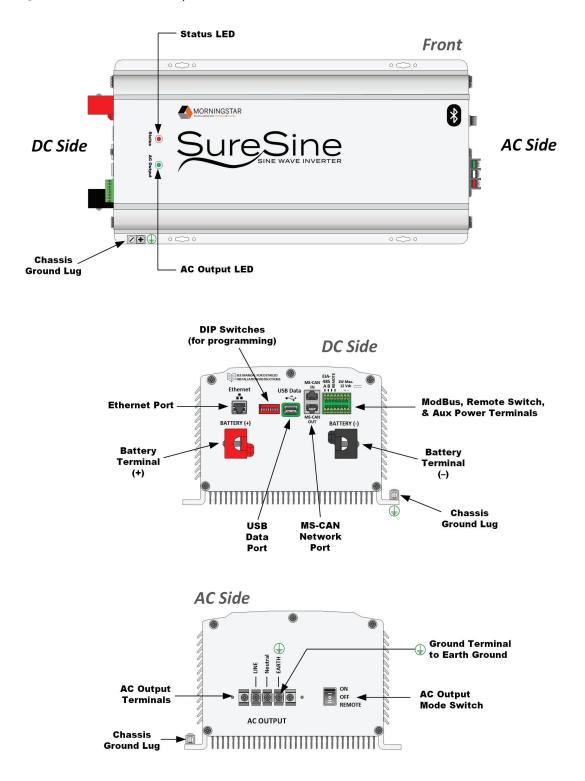
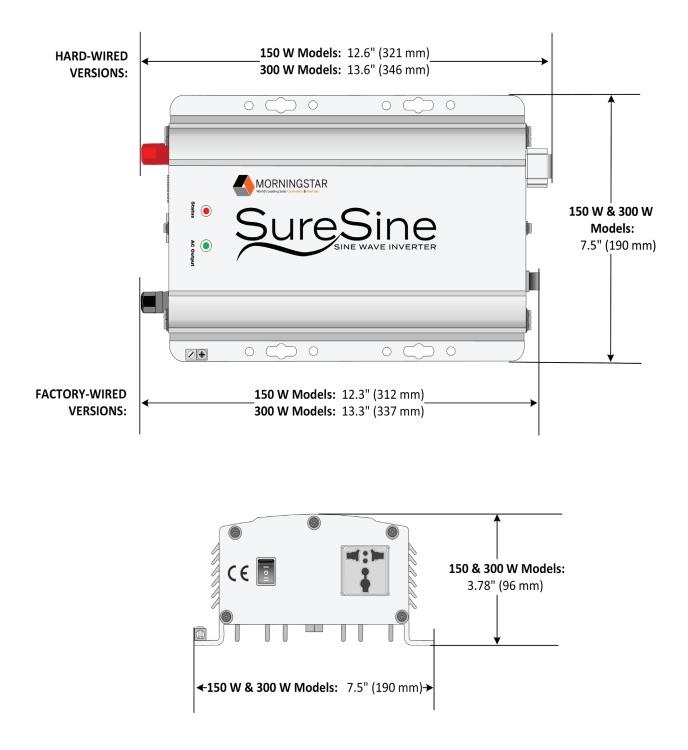
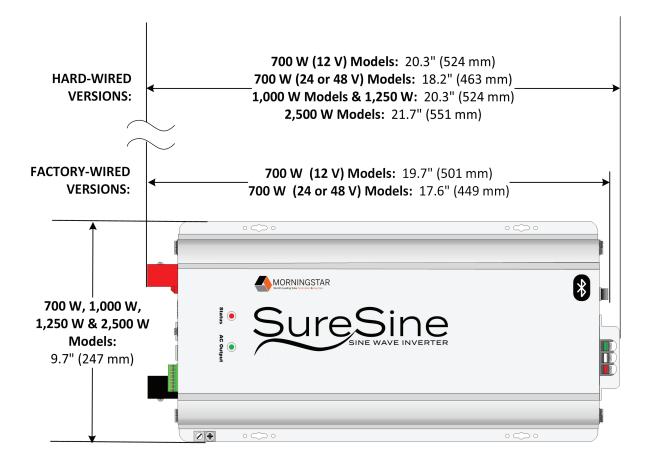
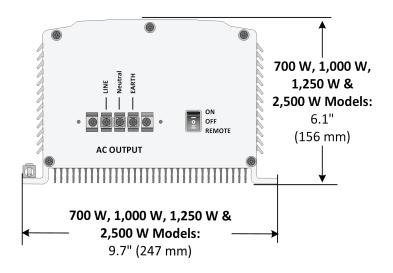


Figure 4: SureSine Inverter Features (1,000 W to 2,500 W Models)

1.5 Dimensions of the 150 W & 300 W Models


Figure 5: Dimensions - 150 W to 300 W Models

1.6 Dimensions of the 700 W to 2,500 W Models

2.0 INSTALLATION

Included in the box:

- Mounting Screws (#10 x4) •
- CAN Terminal resistor
- Terminal block connector (for Modbus, Remote Switch, Auxiliary Power)

2.1 **Required Tools**

#10 Mounting Screws (x4)

4-Pin Pluggable **Terminal Block Connector** (150 W & 300 W Models)

8-Pin Pluggable (x2) **Terminal Block Connector** (700 W to 2,500 W Models)

WARNING: SHOCK HAZARD

This product can produce hazardous voltage. Use insulated tools while working with this equipment.

The minimum required tools include the following. Additional tools may be required depending on the site application.

- Wire cutters/strippers
- Drill and 1/8" (3 mm) drill bit
- #2 Philips and 3/16 (5 mm) & 1/8" (3.8 mm) Flat-head screwdrivers ۲
- Multimeter
- Crimping Tool ۲
- Wrench

2.2 Additional Hardware Requirements

Depending on the type of installation, additional hardware may be required. This hardware is NOT provided with the SureSine Inverter. These types of components include, but are not limited to:

- Battery or battery bank
 - Ensure the battery voltage matches the DC voltage requirements of the model of SureSine inverter to be installed.
 - Ensure the battery bank is comprised of batteries of the same type, make, and age.
- All DC and ground cables ۲
- AC wiring for 700 W to 2,500 W models only
- Sub panels, circuit breakers, fuses Ground Fault Disconnects etc. ۲
- Primary Earth Ground connection (e.g., ground rod)
- Remote Switch (Optional)

Consult the system design diagrams to determine the exact requirements for the installation.

2.3 Mounting

The SureSine may be mounted horizontally on a flat surface (like a table) or vertically (on a wall). If mounted vertically (on a wall), the inverter can be mounted either portrait style or landscape style. Ensure that there is enough space inside the enclosure for the wiring and ventilation. For optimal ventilation and cooling, mount in portrait style orientation.

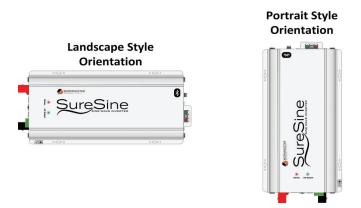
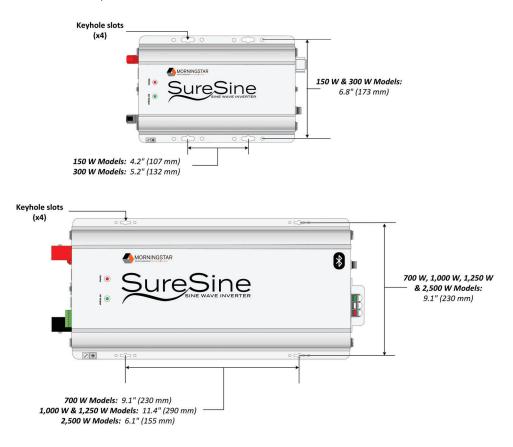
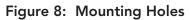




Figure 7: Mounting Orientation

Four Keyhole slots are provided to secure the inverter to the mounting surface.

2.3.1 Safety Considerations for Mounting

WARNING: EXPLOSION/FIRE HAZARD

Do not install in a confined area where battery gases can accumulate. Battery gases can create an explosion or fire hazard if ignited by a spark. Ensure the enclosure is ventilated well enough to disperse any accumulated gases.

Do not install over an easily combustible surface, since the heat sink may get hot under certain operating conditions.

CAUTION: EQUIPMENT DAMAGE

- Do not mount in zero-clearance compartment. Overheating may result. Ensure adequate space around the components to ensure sufficient ventilation around the equipment.
- Locate the SureSine on a surface that is protected from direct sun, high temperatures, corrosive fumes, and water.
- Ensure the mounting surface is strong enough to support the weight of the inverter as well as any other devices that may be attached to it. It may be necessary to reinforce the surface with plywood to provide additional support for the equipment.

CAUTION: HOT SURFACE/BURN HAZARD

The SureSine inverter models 700 W to 2,500 W can become very hot. Install the SureSine so that it cannot be accidentally touched by anyone.

For optimal ventilation and cooling, mount in the portrait style orientation.

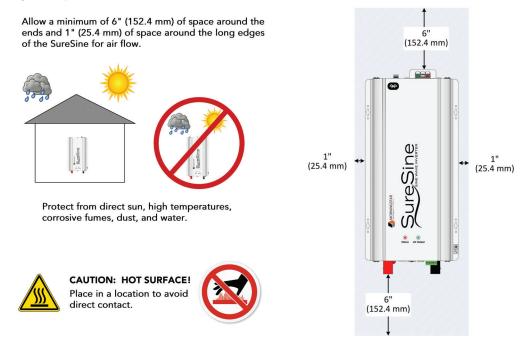


Figure 9: Minimum Clearance and Ventilation Requirements

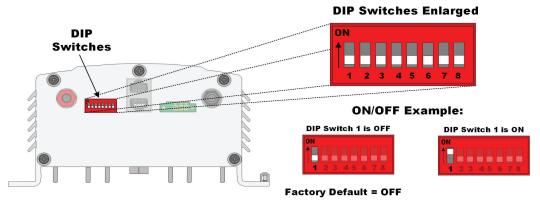
2.3.2 Mounting Procedure

To secure the inverter to the mounting surface:

- 1. Place the SureSine on the surface where it will be mounted and determine where the wires will enter/exit.
 - Be sure there is sufficient bending room for the wires and other auxiliary connections, as required by local code.
 - Verify that the mounting screws will not penetrate wires or other objects located on the opposite side of the surface.
 - Ensure the surface is strong enough to support the weight of the inverter and anything else mounted on it. It may require additional support, such as a sheet of plywood.
- 2. With a pencil or pen, mark the mounting hole locations.
- 3. With a drill and 1/8" (3 mm) bit, drill pilot holes for each of the four mounting screw locations marked on the mounting surface.
- 4. Place the SureSine onto the surface and align the mounting feet holes with the four pilot holes. Use the #10 screws (included) to secure the SureSine to the surface.

2.4 Adjusting Settings

The SureSine has eight (8) DIP Switches that allow for adjusting specific operational parameters for the inverter. Each switch has an ON/OFF position. See Section 2.4.2 on page 12 for details on specific settings.



IMPORTANT:

Check that the DIP Switches are properly configured for the designed installation prior to installing the inverter.

2.4.1 DIP Switch Location

The DIP switches are located on the DC side of all models.

150 W Model shown

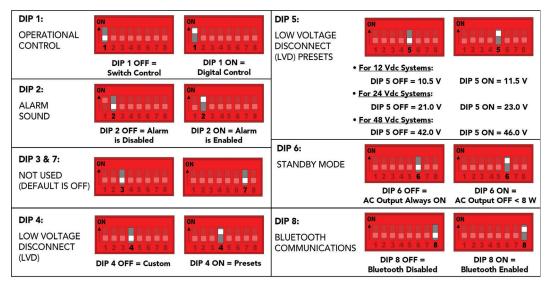


Figure 10: DIP Switches

Figure 11: DIP Switch Configurations

2.4.2 DIP Switch Configuration Options

DIP Switches control the operational functions of the inverter as follows. The default position for these switches is OFF.

DIP Switch	Function	Status	Control Content
1	Operational	OFF	AC Output is controlled by the Remote ON/OFF Switch
	Control	ON	AC Output is controlled by the communication command (digital command).
2	Alarm Sounds	OFF	Alarm OFF
		ON	Alarm ON
3	Not Used	OFF	Not Used - Default is OFF
		ON	Not Used - Default is OFF
4	Low Voltage Disconnect	OFF	CUSTOM. LVD is set to the factory-default values, but can be modified through RS485 communication port or Bluetooth App. See the factory-default settings in Table 2 for default values
		ON	PRESETS. LVD is set with the #5 DIP Switch values and cannot be modified. See the Preset settings in Table 2 for Preset values.
5	Low Voltage Disconnect PRESETS (I.E., Default)	OFF	 Low Voltage Disconnect (LVD) = 10.5 V (21 V or 42 V) Low Voltage Reconnect (LVR) = 11.6 V (23.2 V or 46.4 V) LVD Alarm = 10.8 V, (21.6 V or 43.2 V)
	For 12 V (24 V or 48 V) Systems	ON	 Low Voltage Disconnect (LVD) = 11.5 V (23.0 or 46 V) Low Voltage Reconnect (LVR) = 12.6 V (25.2 V or 50.4 V) LVD Alarm = 11.8 V (23.6 V or 48.4 V)
6	Standby Mode	OFF	AC Output is always ON
		ON	AC Output is OFF unless a load > 8 W is detected
7	Not Used	OFF	Not Used - Default is OFF
		ON	Not Used - Default is OFF
8	Bluetooth	OFF	Bluetooth Disabled
	Communication	ON	Bluetooth Enabled

 Table 2: Low Voltage Disconnect Settings (DIP 4 & 5)

Low Voltage Disconnect	12-volt Models		24-volt Models			48-volt Models			
Factory Default & Presets (All Models)	LVD	LVR	Alarm	LVD	LVR	Alarm	LVD	LVR	Alarm
Factory Default Settings (DIP 4 OFF)*	11.8	12.8	12.1	23.6	25.6	24.2	47.2	51.2	48.4
Preset Low (DIP 4 ON, DIP 5 OFF)	10.5	11.6	10.8	21.0	23.2	21.6	42.0	46.4	43.2
Preset High (DIP 4 ON, DIP 5 ON) *	11.5	12.6	11.8	23.0	25.2	23.6	46.0	50.4	47.2

***Note**: DIP 4 in the OFF position allows the factory-default values to be changed using the RS485 communication port or Bluetooth App, if needed. When DIP 4 is in the OFF position, it disables DIP 5. So when DIP 4 is in the OFF position, the position of DIP 5 is irrelevant.

2.5 Terminal Block Installation for Remote Switch or Communications Wiring

If the site application includes using a Remote Switch or a method of communication, the terminal block that is included in the box will need to be installed. This will either be an 4-pin (150 W or 300 W models) or two 8-pin (700 to 2,500 W models) pluggable terminal block(s).

To install the Terminal Block:

- 1. Align the pins on the back of the terminal block with the holes in the SureSine Chassis on the DC Side of the unit.
- 2. Press into place. Ensure the terminal block seats firmly into place.

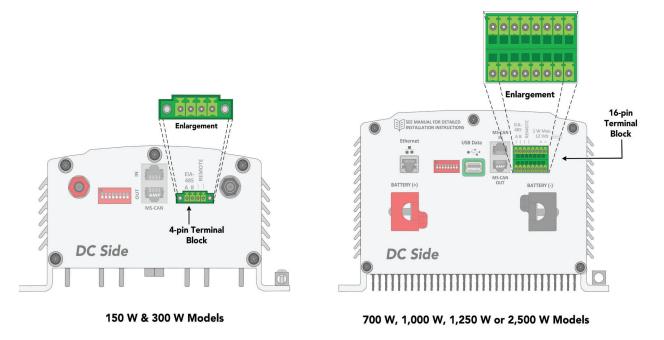


Figure 12: Terminal Block Installation

2.6 Remote Switch Installation (Optional)

IMPORTANT:

Check the AC Output Mode Switch on the AC end of the inverter and ensure it is in the REMOTE position before wiring. See Figure 24 on page 31.

If the site application requires a Remote ON/OFF Switch or relay dry contact, the following illustration shows where to connect the wires.

Note: Closed = ON and Open = OFF.

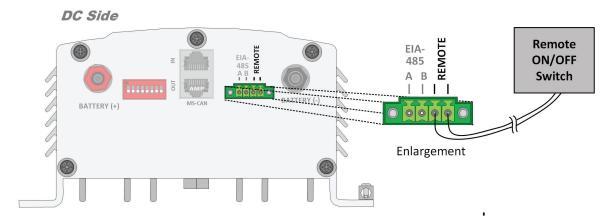


Figure 13: Remote Switch Wiring for 150 W to 300 W Models

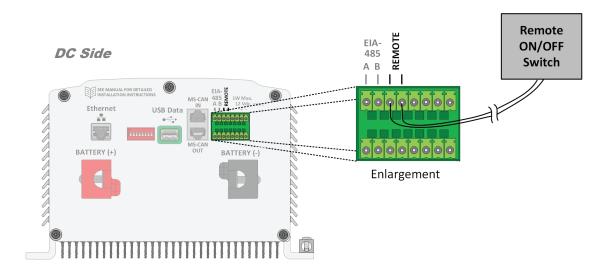


Figure 14: Remote Switch Wiring for 700 W to 2,500 W Models

2.7 Auxiliary Power (Optional)

Auxiliary Power for 1 W (Maximum), 12 Vdc applications is available on the 700 W to 2,500 W Models only. These types of applications include:

- EIA-485 Communication Bus.
- Small DC devices (e.g., LEDs).

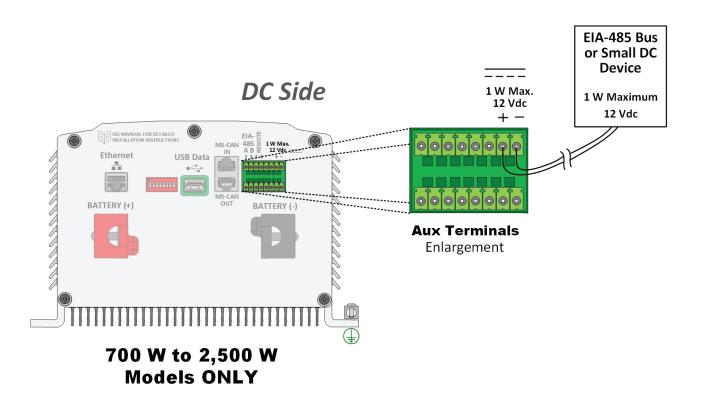


Figure 15: Auxiliary Power Terminals on 700 W to 2,500 W Models

2.8 Inverter Wiring

This section provides general instructions for connecting all the wiring for the inverter. This includes DC, AC, Neutral, and all Ground connections (system and chassis). Ensure **all** connections are made as required by local regulatory code.

WARNING: SHOCK HAZARD

- Installations must be performed by a qualified person trained in electrical safety procedures (minimum qualification).
- All wiring must comply with local electric code requirements.
- Ensure all sources of **input** are disconnected before connecting **ANY** cabling.

WARNING: RISK OF FIRE

All over-current protection devices and wiring must be sized properly, in accordance with US National Electric Code (NEC) or the country of installation's local regulations.

CAUTION: EQUIPMENT DAMAGE

Do not connect the SureSine inverter's AC Output in parallel with any AC power sources. The SureSine inverter is not capable of synchronizing AC output phases. AC power from utility, generator, and inverter AC power can feed back into the unit and instantly damage the inverter and may also pose a fire and safety hazard.

2.8.1 Terminal Torque Requirements

Tighten all connections as specified in Table 3.

Townsingl	Terminal Size or	Torque to:				
Terminal	Wire Size	In-lbs.	Nm			
DC (+) (–) Input Bolt Terminals (150 - 300 Watt) Note 1	M8 (~5/16")	20	2.3			
DC (+) (–) Input Bolt Terminals (700 - 2,500 Watt) Note 1	M6 (~1/4")	35	4			
AC Output Neutral, Line and Ground Terminals Note 2	M6 (~1/4")	20	2.3			
Chassis Ground Lug Note 3	14 - 2 AWG (2.5 - 10.0 mm²)	35	4			
Modbus, Remote Switch, Auxiliary Power Terminals						
Note 1 - Use properly sized ring terminals for DC power connections.						
Note 2 - Use properly sized slotted terminals or solid copper wire (#12 maximum) with AC Neutral, Line, and Ground bolt terminals.						
Note 3 - Use stranded copper wire with Chassis Ground stud.						

Table 3: Terminal Torque Requirements

2.8.2 Over-current Protection Requirements

WARNING: RISK OF FIRE

Fuses or circuit breakers are required in the DC battery circuit (all models) and AC output circuit (700-2,500 W models) and shall be provided by the installer.

Locate battery breakers or fused disconnects for easy access and free from hydrogen gas/sulfuric acid fumes. The battery DC circuit breaker or fuse should be within 6 inches from the battery bank or as close as possible.

WARNING: SHOCK HAZARD

- Fuses, single-pole circuit breakers or single-pole disconnect switches should **NEVER** open grounded system conductors. This could create a shock hazard that could be fatal to personnel and/or damage the equipment.
- Fuses, single-pole circuit breakers, or single-pole disconnect switches must only be installed on ungrounded system conductors.
- It is acceptable to use double-pole breakers or double-pole disconnect switches which break both the grounded and ungrounded conductors with the SureSine inverter.

2.8.2.1 Recommended Battery Over-current Protection Device Sizing

Use Table 4 to determine the size of the over-current protection device required for the battery conductor.

Model Power Rating		Maximum Battery	Recommended Battery		
Watts	Volts DC	Continuous Current	Breaker/ Fuse Rating		
150 W	12 Vdc	18 Amps	30 Amps		
	24 Vdc	8 Amps	12 Amps		
	48 Vdc	4 Amps	6 Amps		
300 W	12 Vdc	36 Amps	50 Amps		
	24 Vdc	16 Amps	25 Amps		
	48 Vdc	8 Amps	12 Amps		
700 W	12 Vdc	84 Amps	125 Amps		
	24 Vdc	38 Amps	60 Amps		
	48 Vdc	18.5 Amps	30 Amps		
1,000 W	24 Vdc	54 Amps	80 Amps		
	48 Vdc	26.5 Amps	40 Amps		
1,250 W	24 Vdc	68 Amps	100 Amps		
	48 Vdc	33 Amps	50 Amps		
2,500 W	48 Vdc	66 Amps	100 Amps		

Table 4: [DC Battery	Circuit	Breaker/Fuse	Size
------------	------------	---------	---------------------	------

2.8.2.2 Recommended AC Over-current Protection Device Sizing

Use Table 5 to determine the size of the over-current protection device required for the AC conductor.

Model Power	AC Output Maximum Continuous Current		AC Circuit Breaker/Fuse Ratings	
Rating	120 Vac Model	230 Vac Model	120 Vac Model	230 Vac Model
150 W	1.25 Amps	0.7 Amps	2 to 5 Amps	1 to 5 Amps
300 W	2.5 Amps	1.3 Amps	4 to 5 Amps	2 to 5 Amps
700 W	5.8 Amps	3 Amps	10 Amps	5 Amps
1,000 W	8.3 Amps	4.3 Amps	15 Amps	7 to 10 Amps
1,250 W	10.5 Amps	5.4 Amps	15 Amps	10 Amps
2,500 W	21.0 Amps	11 Amps	30 Amps	20 Amps

Table 5: AC Circuit Breaker/Fuse Size

2.8.3 DC and AC Conductor Sizing Requirements

It is critical that the ampacity (or current carrying capacity) of conductors is sufficient to handle the maximum current of the power circuits. Ensure that ring or slotted wire terminals have the proper wire size ratings for the wires being installed.

Table 6 and Table 7 show the minimum sizing requirements (for 75°C wire) of each SureSine model when operated at the maximum continuous current rating of the inverter. These sizing requirements are based on NEC 2021 [Table 310.15(b)(16)], ampacity for not more than three current-carrying conductors in a raceway, cable, or earth (buried), based on Ambient Temperature of 30°C (86°F).

Conductors rated for 90°C or in free air have higher ampacities and may provide smaller wire sizing than indicated in these tables. In addition, higher ambient temperatures reduce wire ampacity and increase the wire sizing requirements.

Voltage drops due to longer wire distances is another factor to be considered. Good system design generally requires larger wire sizes that limit voltage drop losses to 2% or less.

Use Table 6 to determine the minimum size for the DC Battery cables.

Model Power Rating	Wire in a Raceway, Cable, or Earth @30°C		
	12 Vdc Model	24 Vdc Model	48 Vdc Model
150 W	10 AWG	14 AWG	14 AWG
300 W	8 AWG	12 AWG	14 AWG
700 W	2 AWG	6 AWG	10 AWG
1,000 W	N/A	4 AWG	8 AWG

Table 6: Minimum Battery Cable Size - 75°C rated Copper

Model Power Rating	Wire in a Raceway, Cable, or Earth @30°C		
Woder i Ower Rating	12 Vdc Model	24 Vdc Model	48 Vdc Model
1,250 W	N/A	3 AWG	8 AWG
2,500 W	N/A	N/A	3 AWG

Table 6: Minimum Battery Cable Size - 75°C rated Coppe	Vinimum Battery Cable Size - 75°C rated Copper
--	--

Use Table 7 to determine the minimum size for the AC output wires.

Table 7: Minimum AC Output Wire Size - 75°C rated Copper

Medal Rewar Pating	AC Wire Size		
Model Power Rating	120 Vac Model	230 Vac Model	
150 W	14 AWG (1 mm²)	14 AWG (1 mm ²)	
300 W	14 AWG (1 mm ²)	14 AWG (1 mm²)	
700 W	14 AWG (1.5 mm ²)	14 AWG (1.5 mm ²)	
1,000 W	14 AWG (1.5 mm ²)	14 AWG (1.5 mm ²)	
1,250 W	14 AWG (1.5 mm ²)	14 AWG (1.5 mm ²)	
2,500 W	14 AWG (4 mm²)	10 AWG (4 mm²)	

See Appendix A for more detailed wire sizing information including tables for 90°C copper wire, wiring in free air, higher ambient temperatures, and voltage drop distance tables for maximum 2% voltage drop in the DC battery cables.

2.8.4 Grounding and Bonding Requirements

A proper grounding system is required for safety, equipment protection and electromagnetic noise reduction.

Ground connections must be made for the chassis and to the primary earth ground for AC connections.

There must be a DC ground bond, AC neutral-ground bond, and a chassis ground connection.

The DC input is isolated from the AC output and chassis so the inverter can have a positive or negative DC system ground depending on the application. DC system grounding is the responsibility of the installer.

The default bond to earth ground is a factory connection between the Neutral Terminal and the metal chassis. The SureSine inverter includes an internal neutral-ground jumper that can allow for the choice between an internal grounded neutral or an external grounded neutral for models which include AC terminals. With the jumper in place the AC Neutral is bonded to ground through the chassis equipment ground wiring.

Refer to DC wiring diagrams in Section 2.8.6 for battery and chassis grounding details.

2.8.4.1 Removing the Internal Neutral-Ground Bond for External Grounded Neutral (Hardwired AC models only)

SureSine models that require AC wiring be hardwired include an internal neutral-ground jumper that can allow for the choice between an internal grounded neutral or an external grounded neutral. The default is set as an internal grounded neutral with the bond in place at the factory.

- One and only one AC neutral-ground bond can be present in the system.
- The internal ground bond must be removed if there is an external AC ground bond.
- Do NOT remove the neutral-ground bond without having a permanent external neutral-ground bond.
- This can only be performed by qualified personnel and requires tool access to the interior of the inverter.
- Removal of the internal neutral ground bond should only be done with models which include AC terminals.
- Do NOT remove the neutral-ground bond for models that come factory wired with an AC outlet.

The AC neutral-ground bond should typically be located at the AC power source. Therefore, it is recommended that the SureSine be installed with the internal AC neutral-ground jumper in place and not have an external neutralground bond unless required.

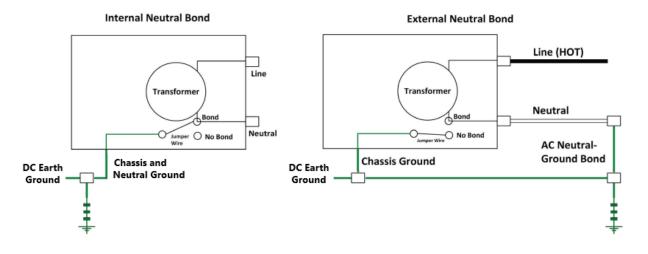


Figure 16: Internal Grounded Neutral vs. External Grounded Neutral (Internal Neutral Ground Bond removed)

Removing the internal neutral ground should only be implemented for applications which require an external Neutral-Ground bond. Two applications where this is required are:

- Inverter as AC grid backup power using a single-pole AC transfer switch
- Integration with AC Generator using a single-pole AC transfer switch

These applications can use a single-pole AC transfer switch with another AC power source and share the same neutral-ground bond at all times. The external AC neutral-ground bond for the SureSine inverter would be located at the external AC source (main utility panel, generator, or distribution panel).

A double-pole transfer switch which switches both the Line and Neutral can be used instead of a single pole transfer switch for these applications.

Double-pole transfer switches are required with mobile applications (RV, marine etc.) where the inverter neutral is bonded to the vehicle or ship metal frame and grid (shore) power is bonded to the "shore" earth ground.

With both neutral and line isolated from the other AC source with a doublepole transfer switch, the SureSine inverter can have independent neutralground bonds and the SureSine inverter keeps the internal neutral-ground bond. This type of transfer switch is preferred as it maintains the neutralground bond at each of the AC power sources (inverter, grid main panel or generator).

2.8.5 Grounding Connections

U.S. installed grounding systems must conform to all U.S. National Electrical Code (NEC) requirements, and/or to any local regulations. Non-U.S. grounding systems must meet all national and local requirements of the country of installation.

NOTE: Resistive-earthed systems are acceptable.

Use only one grounding electrode unless multiple grounding electrodes are reliably bonded together.

All grounding conductors must conform to local codes and regulations.

NOTE: Conductors identified by the color green (or green and yellow) shall only be used for grounding purposes.

Interrupt all power input to the SureSine before working on the grounding system.

2.8.5.1 Chassis Ground

The SureSine chassis grounding terminal is located on the outside of the case as shown in the DC wiring diagrams in Section 2.8.6. Use copper wire to connect the chassis grounding terminal, and other dead metal, to earth ground. A ring wire terminal is required for stranded copper wiring. A terminal is not required for solid copper wiring.

Use Table 8 to size the equipment grounding wire for the chassis based on the DC over-current protection rating per NEC requirements.

Over Current Protection Device Rating (Amps)	Minimum Copper Wire Size (AWG / mm²)
15	#14 / 2.08
20	#12 / 3.31
30-60	#10 / 5.26
100	#8 / 8.36
200	#6 / 13.3

 Table 8: Minimum Wire Sizes for Copper Ground Cable

If the equipment ground wiring is combined with other equipment grounding wiring to a common bus bar, the equipment grounding wire sizing requirement from the bus bar to ground is sized to the highest overcurrent protection rating of the DC System.

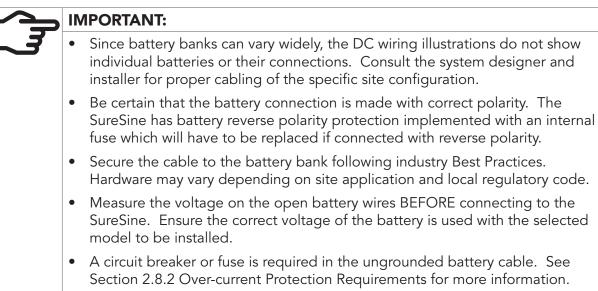
2.8.5.2 DC System Ground

Ensure that the DC system ground is properly bonded to ground.

NEC Section 250.166(B) states that the DC Grounding Electrode Conductor (GEC) must be sized not smaller than the largest DC conductor in the system, and not smaller than the 8 AWG. However, NEC Section 250.166(C) indicates that for DC GEC connections to rod, pipe, or plate grounding electrodes, #6 AWG is adequate.

If the system grounding and equipment grounding is combined to a common bus bar, the earth ground wiring must be sized to the larger of the two.

The internal AC neutral-ground bond is grounded with the chassis equipment grounding.


If the AC Neutral internal bond jumper is removed, an external AC neutral-earth bond is required. For details, refer to Figure 16 "Internal Grounded Neutral vs. External Grounded Neutral (Internal Neutral Ground Bond removed)" in Section 2.8.4.1 "Removing the Internal Neutral-Ground Bond for External Grounded Neutral (Hardwired AC models only)".

2.8.6 DC Connections

DC Connections will vary by site application. The SureSine Inverter can support 12-volt, 24-volt, and 48-volt battery systems.

WARNING: HAZARDOUS CURRENT, RISK OF FIRE OR EXPLOSION

- Do NOT allow the positive (+) DC cable to touch the Negative (–) DC cable. Allowing these cables to touch can create dangerous current or a possible fire/explosion hazard.
- Locate battery breakers or fused disconnects for easy access and free from hydrogen gas/sulfuric acid fumes. The battery DC circuit breaker or fuse should be within 6 inches from the battery bank or as close as possible.

- Refer to Section 2.8.2 Over-current Protection Requirements for recommended DC battery circuit breaker/fuse ratings and Section 2.8.3 DC and AC Power Wire Sizing Requirements for DC battery wire sizing.
- Use a proper crimping Tool to crimp the terminals to the bare ends of the wires where required. Connections should be tight so they can't slide out.

2.8.6.1 Negative Grounding

For wiring diagrams showing **NEGATIVELY** grounded DC Wiring:

- For 150 W & 300 W Models: See Figure 17 on page 25
- For 700 W, 1,000 W, 1,250 W & 2,500 W Models: See Figure 19 on page 26

2.8.6.2 Positive Grounding

For wiring diagrams showing **POSITIVELY** grounded DC Wiring:

- For 150 W & 300 W Models: See Figure 18 on page 25
- For 700 W, 1,000 W, 1,250 W & 2,500 W Models: Figure 20 on page 26

2.8.6.3 DC Wiring Procedure

STEP 1. Before wiring, verify that all breakers are in the open/disconnected position, and that all fuses are removed from the holders.

STEP 2. Connect a battery cable between the **grounded** battery bank post (-) for a negative grounded system or (+) for a positive grounded system) and inverter battery terminal of the same polarity.

STEP 3. Connect a battery cable to the **ungrounded** DC input terminal (+) for a negative grounded system or (–) for a positive grounded system).

STEP 4. Wire a breaker or in-line fused disconnect switch in the ungrounded battery cable no further than 12" (305 mm) from the ungrounded battery post. When wiring a fused disconnect switch, make sure the fuse is between the battery and the switch. Make sure the breaker or disconnect switch is in the OPEN position. **Do not connect the ungrounded battery cable to the battery at this time.**

WARNING: SHOCK HAZARD

Do not close the battery breaker or disconnect switch until all system wiring is completed.

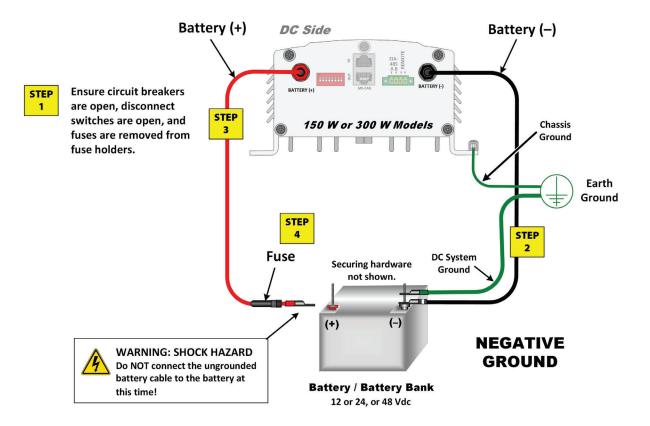


Figure 17: DC Connections on 150 W & 300 W Models with Negative Grounding

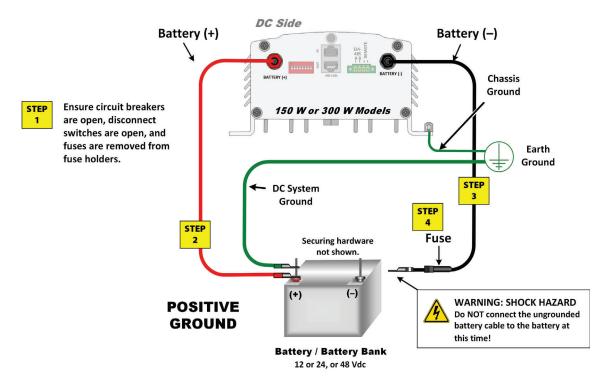


Figure 18: DC Connections on 150 W & 300 W Models with Positive Grounding

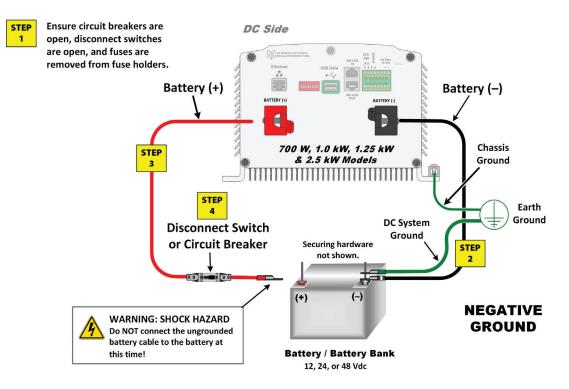


Figure 19: DC Connections on 700 W to 2,500 W Models with Negative Grounding

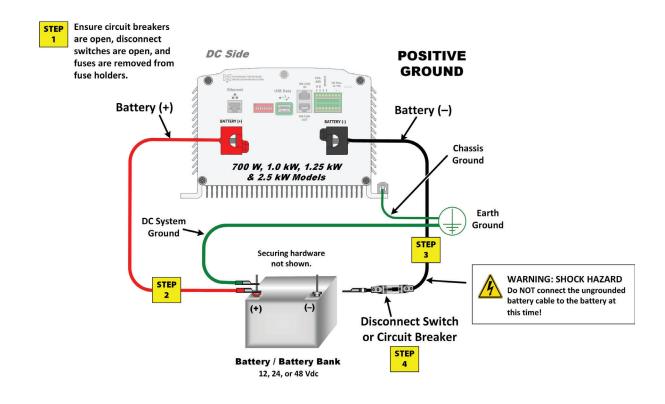


Figure 20: DC Connections on 700 W to 2,500 W Models with Positive Grounding

INSTALLATIO

2.8.7 AC Connections

WARNING: SHOCK HAZARD

This unit is not provided with a GFDI device. This inverter must be used with an external GFDI device as required by the Article 690 of the National Electrical Code for the installation location.

CAUTION: EQUIPMENT DAMAGE

- AC loads should not exceed the continuous and surge power ratings. Exceeding these ratings could cause a fault and shut off the inverter. Loads that have inrush currents that can exceed the highest power surge current rating could damage the inverter.
- There are many types of loads that have high starting surges including pumps, fans, refrigerator or air conditioner, air compressors, electric motors, switched mode power supplies, and power tools. These loads can have a power surge of 2 to 5 times the running power of the load or even higher. If the manufacturer does not provide a surge rating for the load, check with the manufacturer or multiply the maximum power by an appropriate sizing factor for the type of load being used. If there are other loads in the system, the surge power requirement must be added to the total running power of the other loads in the AC system.
- Observe AC output voltage and frequency markings on the SureSine. Be sure AC loads are compatible for proper load operation and to avoid damage to loads and/or inverter.

Models which include AC terminals require permanent, hardwired AC connections. This may require additional hardware such as sub-panels, circuit breakers, fuses, disconnect switches or ground-fault circuit interrupter (GFCI) breakers or outlets. **AC wiring must comply with local regulatory code for the specific site.**

No additional AC wiring is required with models that come factory wired with an AC outlet. A Ground Fault Interrupter power strip or plug-in outlet is recommended.

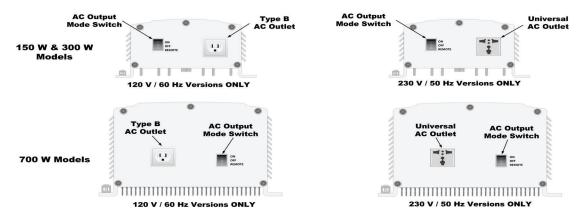


Figure 21: AC Connections on 150 W, 300 W, & 700 W Models (with Factory Wiring)

2.8.8 AC Wiring

The 150 W, 300 W, and 700 W Models comes either factory-wired or have the option of being hardwired. The 1,000 W , 1,250 W, and 2,500 W Models require permanent, hardwired connections. **Wiring must comply with local regulatory code for the specific site.**

WARNING: RISK OF FIRE

Ensure wire sizes comply with local regulatory code.

IMPORTANT:

- A circuit breaker or fuse is required on the hot AC line wire near the inverter.
- Refer to Section 2.8.2 for recommended AC circuit breaker/fuse ratings
- Refer to Section 2.8.3 DC and AC Power Wire Sizing Requirements for AC wire sizing.
- Use a proper crimping tool to crimp the terminals to the bare ends of the wires where required. Connections should be tight so they can't slide out.
- There must be one and **only one AC neutral ground bond**. Do not install The SureSine inverter with an external neutral-ground bond unless the internal neutral-ground bond has been removed. Refer to Section 2.8.4.1 for details.

A three-conductor copper cable with at least a 75°C insulation rating can be used for wiring the AC circuits.

2.8.8.1 AC Wiring Procedure

STEP 1. Before wiring, verify that the AC Output Mode Switch is in the Center/ OFF position, all breakers in the system are in the open/ disconnected position, and all fuses are removed from the holders.

STEP 2. Connect the earth/ ground wire between the Earth terminal of the SureSine inverter and the earth ground connection of the AC device, AC receptacle, or AC distribution panel.

STEP 3. Connect the AC Neutral wire between the AC neutral terminal of the SureSine inverter and the neutral connection of the AC receptacle or AC distribution panel. Ensure that the distribution panel does not have a neutral ground connection.

STEP 4.

- a. Connect the AC line wire between the AC Line terminal of the SureSine inverter and the fuse or AC circuit breaker.
- b. Then connect another wire between the fuse or AC circuit breaker and the line connection of the AC receptacle or AC distribution panel.

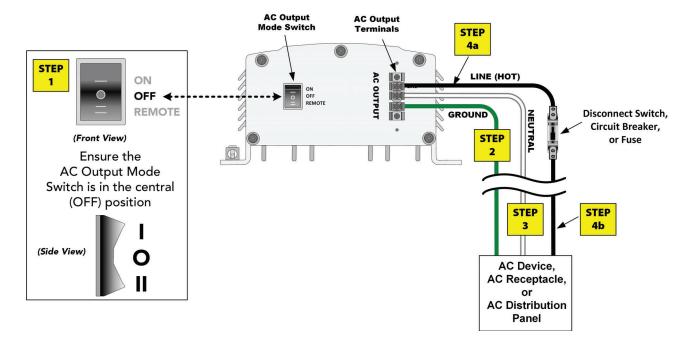


Figure 22: AC Wiring for 150 W or 300 W Models



Figure 23: AC Wiring for 700 W, 1,000 W, 1,250 W or 2,500 W Models

2.9 Check Wiring and Power Up

- 1. Review wiring steps and double-check all wiring and connections.
- 2. Verify that the battery is wired with correct polarity to the SureSine.
- 3. Connect the ungrounded battery cable to the ungrounded battery post.

WARNING: RISK OF EXPLOSION

Connecting the battery to the SureSine with the breaker or disconnect closed will cause a spark at the point of connection. There is a RISK OF EXPLOSION in hazardous areas or locations where explosive gases have accumulated.

- 4. Close the battery breaker or disconnect switch to power up the inverter.
- 5. The SureSine Status LED should illuminate solid Green indicating successful startup and no faults.
- 6. Use the SureSine AC Output Mode Switch to turn on and off the AC output of the inverter. See Table 9 on page 30 for the AC output power status LED.

3.0 OPERATION

3.1 LED Indications

Two Light Emitting Diodes (LEDs) are on the front of the unit to provide Status and AC Output Status. Table 9 defines what the LEDs represent.

STATUS LED ¹	AC Output LED	Operation or State					
OFF	OFF	No power or Battery below 9.5 V					
GREEN O	OFF	AC Output OFF					
GREEN	green 🔵	AC Output ON					
GREEN O	GREEN (BLINK) ²	AC Standby Mode					
GREEN O	RED (BLINK) ²	Low Voltage Disconnect (LVD) Warning					
GREEN	red 🔍	Low Voltage Disconnect (LVD)					
RED 🔍	RED 🔍 (not blinking)	Inverter or System Fault ³ (Critical Fault. Requires a reboot.)					
red 🔵	OFF (not blinking) Inverter or System Fault ³						
¹ The Status LED flickers ON very briefly when the LED is OFF. The Status LED flickers OFF very briefly when the LED is GREEN or RED solid. The "heartbeat" occurs every 5 seconds.							
² 0.5 Hz. Rate							
³ See Section 3.3 on pag	³ See Section 3.3 on page 31 for more information concerning faults.						

3.2 AC Output Mode Switch Operation

The AC Output Mode Switch will always turn the inverter on directly in the ON (up) position. To enable ON/OFF control with a wired remote switch or a communication command (digital command), the switch must be in the REMOTE position. Select remote switch or digital command using DIP Switch # 1.

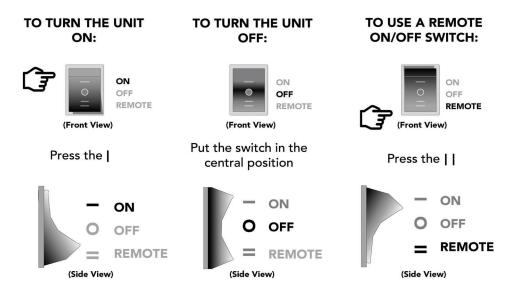


Figure 24: AC Output Mode Operation and Bluetooth Activation

3.3 Protections

3.3.1 Low Voltage Disconnect (LVD)

The SureSine will disconnect AC Output when the battery discharges below the Low Voltage Disconnect (LVD) set point (after a 4-minute delay). AC Output will resume when the battery has recharged to Low Voltage Reconnect (LVR) set point. The LVD/LVR thresholds are adjustable using DIP Switch 4. See "Adjusting Settings" on page 11 for details.

Audible LVD Warnings:

- The SureSine will beep four (4) times when the battery discharges to the LVD Warning threshold voltage.
- The SureSine will beep twice when Low Voltage Disconnect occurs.
- The LVD Warning occurs 0.3 V above the selected LVD threshold.

3.3.2 High Voltage Disconnect (HVD)

The SureSine will shut down and disconnect AC Output if battery voltage exceeds 15.5 V. It will automatically reconnect when the battery voltage decreases to 14.5 V.

3.3.3 High Temperature Disconnect (HTD)

If the SureSine heat sink temperature rises above 95°C, an HTD fault will occur and the SureSine will disconnect the AC Output. Normal operation will automatically resume when the heat sink cools to 80°C.

3.3.4 Over Current and Short Circuit Protection (Critical Fault)

The SureSine inverter has full electronic protection against AC overloads and short circuits on AC Output. Three (3) automatic retries will be attempted every 10 seconds.

If a short circuit still persists after three (3) retries, the fault must be manually cleared in one of the following ways:

- a. Disconnect, then reconnect battery power.
- b. Use the SureSine Utility app to send a Reset command.

4.0 COMMUNICATION OPTIONS

The SureSine Inverter line provides communication options to monitor system data and control operations using a computer or mobile device.

The SureSine Inverter comes with the following communication options:

- 150 W & 300 W Models:
 - Bluetooth for wireless communication to a computer or mobile device
 - EIA-485 for connection to a EIA-485 network with other devices in the system which may include other SureSine inverters, Morningstar products, and 3rd-party equipment
 - (Future Feature Improvement) MS-CAN (Morningstar Communication Area Network) for a wired communication connection to other Morningstar products
- 700 W to 2,500 W Models
 - Bluetooth for wireless communication to a mobile device
 - Ethernet (for Modbus TCP/IP connection over WAN/LAN)
 - EIA-485 for connection to a EIA-485 network with other devices in the system which may include other SureSine inverters, Morningstar products, and 3rd-party equipment
 - USB Data Port for firmware updates
 - (Future Feature Improvement) MS-CAN (Morningstar Communication Area Network) for a wired communication connection to other Morningstar products

Figure 25 shows the locations of the communication ports on each model.

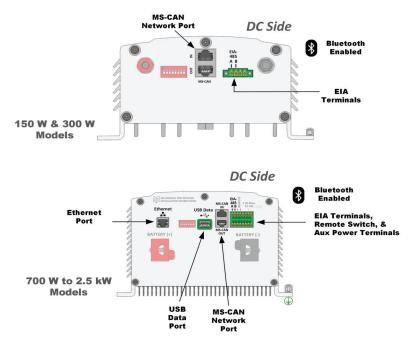
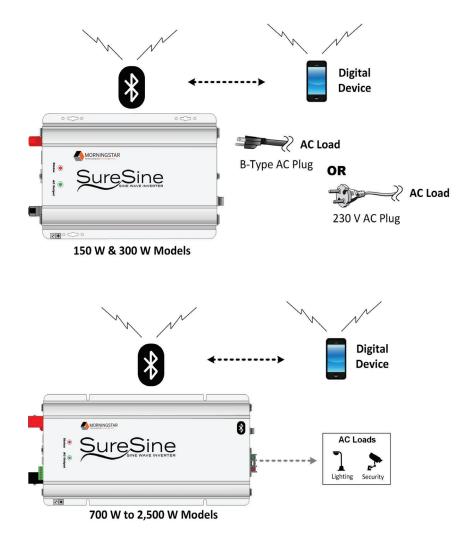


Figure 25: Communication Port Locations




4.1 Bluetooth

Bluetooth is for connecting a mobile device to the SureSine Inverter. DIP Switch #8 must be enabled (ON) for this feature to function. See Section 2.4 on page 11 for details on enabling this feature.

4.1.1 To Connect the SureSine using Bluetooth

- 1. Set the AC Output Mode Switch to REMOTE.
- 2. Make sure the Bluetooth feature on your digital device is turned ON.
- 3. See Section 4.1.2 on page 35 for instructions on downloading and installing the SureSine Utility App to your digital device.
- 4. Use the SureSine Utility mobile app to control and monitor the activities of the SureSine Inverter.

4.1.2 SureSine Utility App

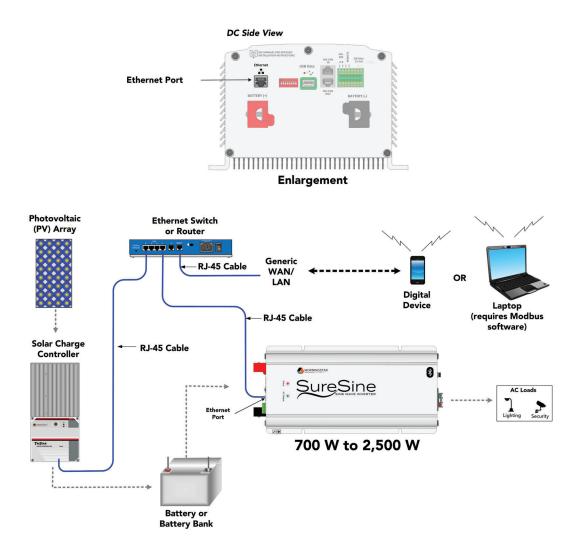
The SureSine inverter has a Utility App available for monitoring and settings adjustments. This app is designed for Android and Apple devices and connects using Bluetooth.

The SureSine Utility App is available at Google Play and Apple App stores. Download and install the App and follow the instructions from the App for set up and operation.

SI-300-48-120-60 sn:MS2210M420005
Resetable 1.08 kWh
Clock 2000-1-1 7:00:30
Battery Voltage 50.34 V
Battery current 0.05 A
AC output voitage 0.1 V
It Heatsink temperture 23 ℃
💷 🗠 litit 😳

Figure 27: SureSine Utility App (Main Dashboard)

4.2 Ethernet (for Modbus™ TCP/IP)


The Ethernet port is for communicating by Modbus TCP/IP. The Modbus specification document is available at www.morningstarcorp.com. The Modbus specification document details on register locations, scaling, and variable definitions.

Use a CAT5, CAT6, or CAT7 cable with an RJ-45 plug for connections.

4.2.1 To Connect to the Internet using Modbus Protocols

- 1. Insert one end of a CAT5, CAT6, or CAT7 cable into the Ethernet Port on the SureSine Inverter.
- 2. Insert the other end of that cable into a router or Ethernet Switch.
- 3. Connect using the Modbus software of choice.

4.3 EIA-485 Device Communication

EIA-485 is a networking standard for serial communication between multiple devices on a bus. The EIA-485 port on the SureSine inverter is for connecting to one or more devices on a EIA-485 network through the open standard ModBus™ protocol.

Morningstar EIA-485 devices include the GenStar, TriStar-MPPT-60/M (150 and 600 V) models, or with other Morningstar products with the RSC-1 Serial-to-EIA-485 Adapter.

The TriStar-MPPT Charge Controller and RSC Serial adapters require an external 12 V power source to enable the EIA-485 communications. The 12 Vdc Auxiliary Power feature of 700 W to 2,500 W models can be used, therefore, to power Morningstar EIA-485 devices in an EIA-485 Network.

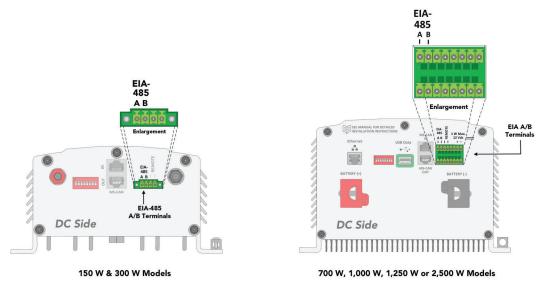


Figure 29: EIA-485/RS-232 Communications Adapter (RSC-1)

For more information on EIA-485 networking, refer to the Morningstar Product Connectivity Manual, Networking & Communications, at <u>https://www.morningstarcorp.</u> <u>com/wp-content/uploads/2014/02/MS-Comm-Document-2010.pdf</u>.

4.3.1 To Connect the SureSine Inverter to an EIA-485 Device

- 1. Connect the A and B wires from the EIA-485 device to the A and B terminals on the DC Side of the SureSine Inverter.
- 2. Connect the other ends of the A and B wires to the EIA-485 device.

- 3. If using the Auxiliary Power feature of a SureSine 700 W to 2,500 W model to power Morningstar EIA-485 devices in an EIA-485 Network:
 - connect the Ground (GND) terminal wire from the EIA-485 device(s) to the –12 V terminal of the SureSine inverter
 - connect the Power terminal wire from the EIA-485 device(s) to the (+12 V) terminal of the SureSine inverter.

Note: The 12 V Auxiliary Power rating is 1 Watt which will limit the number of EIA-485 devices that can be powered.

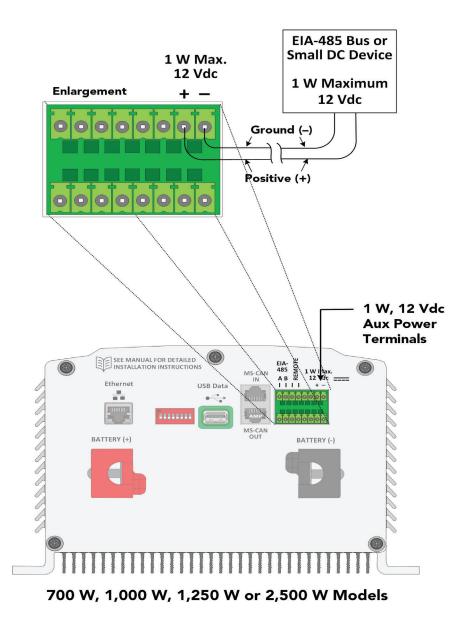


Figure 31: Auxiliary Power Connections (700 W, 1,000 W, 1,250 W or 2,500 W Models ONLY)

4.4 USB Port

A USB port is available on the 700 W, 1,000 W, 1,250 W, and 2,500 W models. The USB port is used for connecting a USB device for firmware updating. This port requires a USB-A plug. This feature works with the following USB devices:

- USB flash drive
- External hard drive

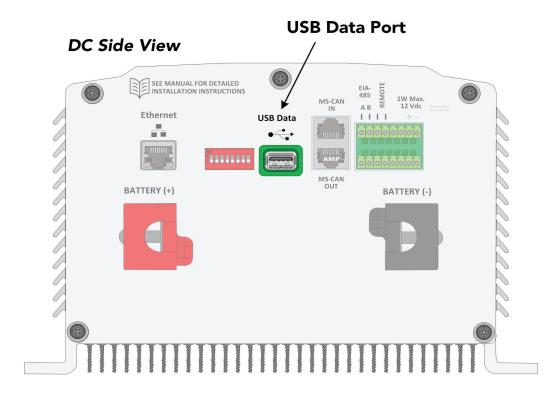
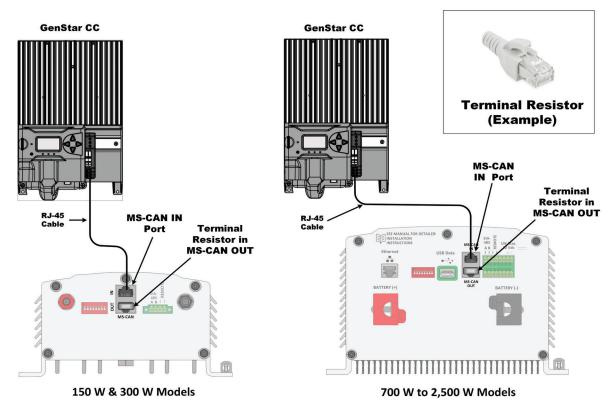


Figure 32: USB Port Locations

4.4.1 To Connect to the USB Port

- 1. Insert a USB-A plug for a USB data storage device into the USB data port.
- 2. Use the SureSine Utility App to activate the firmware update. See Section 5.0 on page 42 for details.



4.5 MS-CAN (Future Feature)

MS-CAN is for communicating with other Morningstar components within the network. This feature is not available at this time. Check the Morningstar website (www.morningstarcorp.com) for updates. **Note:** The Morningstar component must be MS-CAN enabled.

4.5.1 To Connect the SureSine to another Morningstar Device

- 1. Insert one end of an RJ-45 cable (CAT5, CAT6, or CAT6e) into the **MS-CAN IN** port on the SureSine Inverter.
- 2. Insert a terminator resister into the **MS-CAN OUT** port, if no other Morningstar devices are to be connected.
- 3. Connect the other end of the RJ-45 cable to the other Morningstar device.

Examples only. Actual configuration may vary.

Figure 33: Communication Using MS-CAN

4.5.2 To Connect the SureSine to a Morningstar Network

- 1. Insert one end of an RJ-45 cable (CAT5, CAT6, or CAT6e) into the **MS-CAN OUT** port on the first device in the daisy chain.
- 2. Insert the other end of that RJ-45 cable into the **MS-CAN IN** port on the SureSine Inverter.
- 3. Insert another RJ-45 cable into the **MS-CAN OUT** port on the SureSine Inverter.
- 4. Insert the other end of the RJ-45 cable into the **MS-CAN IN** port on the next Morningstar device in the network.
- 5. Insert a 120 Ohm CANBUS terminator resister into the **MS-CAN OUT** port on the final device, if no other Morningstar devices are to be connected.

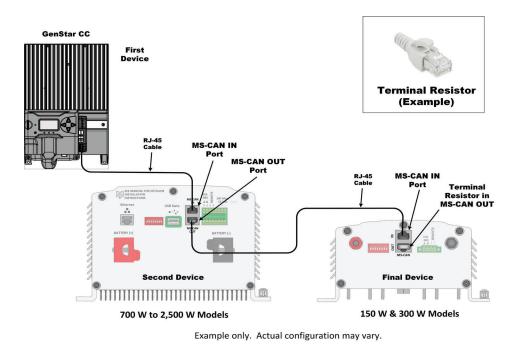


Figure 34: Communication Using MS-CAN with Multiple Devices

5.0 FIRMWARE UPDATE PROCEDURE

To update the SureSine firmware, perform the following procedure.

- 1. Go go to **www.morningstarcorp/support** and copy the firmware update program to a USB data storage device (such as a flash drive).
- 2. Insert a USB-A plug for a USB data storage device into the USB data port.
- 3. Use the SureSine Utility App to activate the firmware update.

6.0 SPECIFICATIONS

This section provides the specifications for the SureSine Inverter Industrial Line.

•		Model						
Specifi	Specification -		SureSine 150			SureSine 300		
Rated Battery Voltage		12 V	24 V	48 V	12 V	24 V	48 V	
Battery Operational Voltage Range		10.0 to 16.5 V	20.0 to 33.0 V	40.0 to 66.0 V	10.0 to 16.5 V	20.0 to 33.0 V	40.0 to 66.0 V	
Maximum Continuous DC	Input Current	18 A	8 A	4 A	36.A	16 A	8 A	
AC Output Voltage (Frequ	ency) Options	120 V	(60 Hz) / 230) V (50 Hz) / ′	127 V (60 Hz	z) / 220 V (6	0 Hz.)	
	120 V	1	1.25 A			2.5 A		
Maximum Continuous	230 V		0.65 A			1.3 A		
AC Output Current	127 V		1.7 A			2.4 A		
	220 V		0.7 A			1.4 A		
Continuous AC Output Pc	wer @ 40°C		150 W			300 W		
Power Surge @40°C (< 5 s	ec)		300 Watts			600 W		
1 minute Surge Power @ 4	0°C	225 Watts			450 W			
3 minute Surge Power @ 4	-0°C	180 Watts		360 W				
Peak Efficiency		89%	89%	90%	91%	91%	92%	
Total Harmonic Distortion	(THD)	< 2%						
	AC ON	2.6 W		3.9 W				
Self-Consumption	AC OFF or Standby	0.65 W		0.65 W				
Surge Protection	·		2,50	0 A (Battery	and AC Loa	ds)		
Auxiliary Power		Not Available						
Remote Switch		Yes						
Product Weight (lbs. / kg)		9.5 lbs. / 4.4 kg			12.5 lbs. / 5.8 kg			
Shipping Weight		11 lbs. / 5.0 kg			14.0 lbs. / 6.8 kg			
Dimensions (L \times W \times H)		12.3" x 7.5" x 3.78" 12.3" x 7.5" x 3.7 (321 mm × 190 mm × 96 mm) (321 mm × 190 mm ×						
Mechanical:								
Battery Power Stud Bolt S	ze / Torque	M8 (~5/16"); 20 in-lbs. / 2.3 Nm; hand tighten						
AC Power Stud Size / Torc	ue	M6 (~1/4"); 20 in-lbs. / 2.3 Nm						
Grounding Terminal wire size / Torque		14 - 2 AWG (2.5 - 10 mm²); 35 in-lbs. / 4 Nm						
EIA-485/ Remote / Auxilia Terminals	ry plug-screw Block	16 to 28 AWG (1.0 to 0.1 mm²); 5 in-lbs. / 0.57 nm			n			
AC Pagantagla Ontigra	120 V Models	N. A	. NEMA 5, B	-Туре	N. A. NEMA 5, B-Type		-Туре	
AC Receptacle Options	230 V Models	Un	iversal A-L Ty	ype	Uni	versal A-L T	ype	

Table 10: Specifications for the SureSine 150 and SureSine 300

	for the SureSine 700 and SureSine 1000 Model						
Specifi		SureSine 70	0	SureSine 1000			
Rated Battery Voltage	12 V	24 V	48 V	24 V	48 V		
Battery Operational Voltag	ge Range	10.0 to 16.5 V	20.0 to 33.0 V	40.0 to 66.0 V	20.0 to 33.0 V	40.0 to 66.0 V	
Maximum Continuous DC	Input Current	84 A	38A	18.5 A	54 A	26.5 A	
AC Output Voltage (Frequ	iency) Options	120 V	(60 Hz) / 230	V (50 Hz) / ⁻	127 V (60 Hz) / 22	0 V (60 Hz.)	
	120 V	1	5.8 A		5.8	3 A	
Maximum Continuous	230 V		3.0 A		3.0) A	
AC Output Current	127 V		5.5 A		8.0	A (
	220 V		3.2 A		4.5	δA	
Continuous AC Output Pc	ower @ 40°C		700 W		1,00	0 W	
Power Surge @40°C (< 5 s	sec)	1,400 W			2,00	0 W	
1 minute Surge Power @4	0°C	1,050 W			1,500 W		
3 minute Surge Power @40°C		840 W		1,200 W			
Peak Efficiency		91%	92%	92%	93%	93%	
Total Harmonic Distortion	(THD)	2%					
	AC ON	9.4 W		10.0 W			
Self-Consumption	AC OFF or Standby	< 2.8 W			< 2.3 W		
Surge Protection	·	2,500 A (Battery and AC Loads)					
Auxiliary Power		12 V, 1 W					
Remote Switch		Yes					
Product Weight (lbs. / kg)		9.5 lbs. / 4.4 kg			12.5 lbs. / 5.8 kg		
Shipping Weight		11 lbs. / 5.0 kg			14.0 lbs. / 6.8 kg		
Dimensions (L \times W \times H)						12.3" x 7.5" x 3.78" (321 mm× 190 mm × 96 mm)	
Mechanical:							
Battery Power Stud Bolt S	ize / Torque	M6 (~1/4"); 35 in-lbs. / 4 Nm					
AC Power Stud Size / Torc	lue	M6 (~1/4"); 20 in-lbs. / 2.3 Nm					
Grounding Terminal wire s	ize / Torque	14 - 2 AWG (2.5 - 10 mm²); 35 in-lbs. / 4 Nm				Nm	
EIA-485/ Remote / Auxiliary plug-screw block Terminals		16 to 28 AWG (1.0 to 0.1 mm²); 5 in-lbs. / 0.57 Nn			.57 Nm		
AC Receptacle Options	120 V Models	N. A	NEMA 5, B	-Туре	Not Av	ailable	
AC Receptacle Options	230 V Models	Universal A-L Type Not Availal			railabla		

Table 11:	Specifications	for the	SureSine	700 and	SureSine	1000
					• • • • • • • • • • • • • • • • • • • •	

		or the SureSine 1250 and SureSine 2500 Model				
Specif	ication	SuroSir	ne 1250	SureSine 2500		
Rated Battery Voltage		24 V	48 V	48 V		
Battery Operational Voltag	ge Range	20.0 to 33.0 V	40.0 to 66.0 V	40.0 to 66.0 V		
Maximum Continuous DC	Input Current	68 A	33 A	66 A		
AC Output Voltage (Frequ	iency) Options	120 V (60 Hz) / 230 V (50 Hz) / 1	127 V (60 Hz) / 220 V (60 Hz.)		
	120 V	5.8	3 A	5.8 A		
Maximum Continuous	230 V	3.0) A	3.0 A		
AC Output Current	127 V	10.	0 A	20.0 A		
	220 V	5.7	7 A	11.5 A		
Continuous AC Output Pc	ower @ 40°C	1,20	00 W	2.500 W		
Power Surge @40°C (< 5 s	sec)	2,50	00 W	5,000 W		
1 minute Surge Power @4	0°C	1,87	75 W	3,750 W		
3 minute Surge Power @4	0°C	1,500 W		3,000 W		
Peak Efficiency		93%	94%	95%		
Total Harmonic Distortion	(THD)	2%				
0.11.0	AC ON	9.4 W		10.0 W		
Self-Consumption	AC OFF or Standby	< 2.8 W		< 2.3 W		
Surge Protection			2,500 A (Battery	and AC Loads)		
Auxiliary Power			12 V, 1 W			
Remote Switch		Yes				
Product Weight (lbs. / kg)		38.5 lbs. / 17.4 kg		45.0 lbs. / 20.4 kg		
Shipping Weight		41.0 lbs. / 18.6 kg		48.0 lbs. / 21.8 kg		
Dimensions (L \times W \times H)		20.63" x 9.72" x 6.14"		21.7" x 9.7" x 6.14"		
		(524 mm x 247 mm x 156 mm) (551 n		(551 mm x 247 mm x 156 mm		
Mechanical:		T				
Battery Power Stud Bolt S		M6 (~1/4"); 35 in-lbs. / 4 Nm				
AC Power Stud Size / Torc	lue	M6 (~1/4"); 20 in-lbs. / 2.3 Nm				
Grounding Terminal wire s	size / Torque	14 - 2 AWG (2.5 - 10 mm²); 35 in-lbs. / 4 Nm				
EIA-485/ Remote / Auxilia Terminals	16 to 28 AWG (1.0 to 0.1 mm²); 5 in-lbs. / 0.57 Nm					
AC Resente de Ontinue	120 V Models	Not Av	Not Available Not Availab			
AC Receptacle Options	230 V Models	Not Available		Not Available		

Features	Waveform - Pure Sine Wave			
	Galvanically Isolated			
	Cooling - Fanless natural convection			
Electronic Protections	AC Output Short Circuit			
	AC Output Overload			
	High Heat Sink Temperature - Load Disconnect			
	Battery Reverse Polarity - Replaceable internal fuse			
	Heat Sink Temperature: Warning 90°C; Fault > 95°C; Recovery 80°C			
Environmental	Storage Temperature Range: -40°C to +60°C			
	Operating Temperature Range - 40°C to +60°C			
	Humidity - 100% non-condensing			
	Enclosure IP Rating: IP 20			
	Altitude - 2,000 meters			
Communications	MODBUS RS-485			
	MS-CAN			
	MODBUS over Ethernet (700 Watts and above only)			
	USB (700 Watts and above only)			
	Wireless Communications Bluetooth (Android and Apple)			
	Data Storage 4 MB / 5 years internal 4 MB / 5 years internal			
Warranty	5 Years			

Table 13: Common Specifications for all Models

APPENDIX A: DC BATTERY WIRE SIZING

Wire sizing requirements are based on the ampacity (or current carrying capacity) of conductors. The NEC includes Ampacity Tables which are used to determine the ampacity for a given wire size as indicated in Section 310.15.

The battery wire ampacity must be greater than or equal to 125% of maximum continuous battery current of the SureSine inverter. If the inverter is not intended to be used to full capacity smaller wires can be used but only with an undersized breaker to ensure that the current will not exceed the current carrying capacity of the wire.

Correction and adjustment factors may be required to account for the following:

- maximum ambient temperature
- temperatures at different parts of the circuit (rooftops or engine rooms for example)
- wire terminal temperature ratings
- multi conductor cables
- conduit fill and other factors

The following tables provide the 1-way, maximum length for cables and wires based on the system voltage and ampacity with a 2% voltage drop.

Мс	del	Max Battery Continuous			Wire Siz (N	Metric Wire Size mm ²	
Watts	Volts	Current	@30°C	30° - 60°C	@30°C	30°-45°C	(NOTE 3)
150 W	12 Vdc	18 Amps	10 AWG	8 AWG > 55°C	10 AWG	10 AWG	> 4 mm2
150 W	24 Vdc	8 Amps	14 AWG	14 AWG	14 AWG	14 AWG	> 1.5 mm2
150 W	48 Vdc	4 Amps	14 AWG	14 AWG	14 AWG	14 AWG	> 1.5 mm2
300 W	12 Vdc	36 Amps	8 AWG	6 AWG > 35°C	8 AWG	6 AWG > 55°C	> 6 mm2
300 W	24 Vdc	16 Amps	12 AWG	10 AWG	12 AWG	10 AWG	> 4 mm2
300 W	48 Vdc	8 Amps	14 AWG	14 AWG	14 AWG	14 AWG	> 1.5 mm2
700 W	12 Vdc	84 Amps	2 AWG	1 AWG > 30°C 1/0 AWG > 55°C	4 AWG	3 AWG > 40°C 2 AWG > 50°C	> 25 mm2
700 W	24 Vdc	38 Amps	6 AWG	4 AWG > 50°C	8 AWG	6 AWG > 55°C	> 6 mm2
700 W	48 Vdc	18.5 Amps	10 AWG	8 AWG > 55°C	10 AWG	10 AWG	> 4 mm2
1,000 W	24 Vdc	54 Amps	4 AWG	3 AWG > 45°C	6 AWG	4 AWG > 50°C	> 16 mm2
1,000 W	48 Vdc	26.5 Amps	8 AWG	6 AWG > 55°C	8 AWG	8 AWG	> 6 mm2
1,250 W	24 Vdc	68 Amps	3 AWG	2 AWG > 40°C 1 AWG > 50°C	6 AWG	4 AWG > 40°C 3 AWG > 55°C	> 16 mm2
1,250 W	48 Vdc	33 Amps	8 AWG	6 AWG > 40°C 4 AWG > 55°C	8 AWG	6 AWG > 55°C	> 10 mm2
2,500 W	48 Vdc	66 Amps	3 AWG	2 AWG > 40°C 1 AWG > 50°C	6 AWG	4 AWG > 55°C	> 16 mm2

Table 14: Minimum Battery Wire Sizes - 75°C Rated Stranded Copper

Note 1: Per NEC 2021 [see NEC Table 310.15(b)(16)], ampacity for not more than three current-carrying conductors in a raceway, cable, or earth (buried)

Note 2: Per NEC 2021 [see NEC Table 310.15(b)(17)], ampacity for conductors in free air

Note 3: Estimated. See local code requirements for metric cable sizing

T

Table 15: Minimum Battery Wire Sizes - 90°C Rated Stranded Copper								
Мо	ModelMax BatteryWire Size in a raceway, cable, or earth (NOTE: 1)			Wire Size in Free A (NOTE 2)				
Watts	Volts	Current	@30°C	30° - 60°C	@30°C	30°-45°C		
150 W	12 Vdc	18 Amps	10 AWG	10 AWG	10 AWG	10 AWG		
150 W	24 Vdc	8 Amps	16 AWG	16 AWG	14 AWG	16 AWG		
150 W	48 Vdc	4 Amps	16 AWG	16 AWG	14 AWG	16 AWG		
300 W	12 Vdc	36 Amps	8 AWG	6 AWG > 45°C	8 AWG	8 AWG		
300 W	24 Vdc	16 Amps	12 AWG	10 AWG > 55°C	12 AWG	12 AWG		
300 W	48 Vdc	8 Amps	16 AWG	16 AWG	14 AWG	16 AWG		
700 W	12 Vdc	84 Amps	3 AWG	2 AWG > 35°C 1 AWG > 45°C	4 AWG	3 AWG > 50°C		
700 W	24 Vdc	38 Amps	8 AWG	6 AWG > 40°C 4 AWG > 55°C	8 AWG	8 AWG		
700 W	48 Vdc	18.5 Amps	10 AWG	10 AWG	10 AWG	10 AWG		
1,000 W	24 Vdc	54 Amps	6 AWG	4 AWG > 35°C 3 AWG > 45°C	6 AWG	4 AWG > 50°C		
1,000 W	48 Vdc	26.5 Amps	8 AWG	6 AWG > 55°C	8 AWG	8 AWG		
1,250 W	24 Vdc	68 Amps	4 AWG	3 AWG > 40°C 2 AWG > 50°C	6 AWG	4 AWG > 40°C 3 AWG > 55°C		
1,250 W	48 Vdc	33 Amps	8 AWG	6 AWG > 50°C	8 AWG	6 AWG > 55°C		
2,500 W	48 Vdc	66 Amps	4 AWG	3 AWG > 40°C 2 AWG > 50°C	6 AWG	4 AWG > 55°C		

Note 1: Per NEC 2021 [see NEC Table 310.15(b)(16)], ampacity for not more than three current-carrying conductors in a raceway, cable, or earth (buried)

Note 2: Per NEC 2021 [see NEC Table 310.15(b)(17)], ampacity for conductors in free air

Note 3: Estimated. See local code requirements for metric cable sizing

°Celsius	°Fahrenheit
30	86
35	95
40	104
45	113
50	122
55	131
60	140

Table 16: Celsius-to-Fahrenheit Conversions

APPENDIX B: DC VOLTAGE DROP TABLES

Good system design generally requires large conductor wires that limit voltage drop losses to 2% or less. Table 17 and Table 18 provide wire sizing for a maximum of 2% voltage drop. Longer distance wire runs may require significantly larger wire sizes to reduce the voltage drop to an acceptable level.

B.1 Voltage Drop Chart for 75°C or 90°C Stranded Copper Wire (Feet), 12 Volt System

For 24- or 48-volt systems multiply the values in Table 17 by:

- 2 for 24-volt systems
- 4 for 48-volt systems

Wire								Amps							
Size (AWG)	70	60	55	50	45	40	35	30	25	20	15	12	10	8	5
4/0	31.3	36.5	39.8	43.8	48.6	54.7	62.5	72.9	87.5						
3/0	24.8	28.9	31.6	34.7	38.6	43.4	49.6	57.9	69.5	86.8					
2/0	19.6	22.9	25.0	27.5	30.6	34.4	39.3	45.8	55.0	68.8	91.7				
1/0	15.6	18.2	19.8	21.8	24.2	27.3	31.1	36.3	43.6	54.5	72.7	90.8			
1	12.3	14.4	15.7	17.3	19.2	21.6	24.7	28.8	34.5	43.2	57.6	72.0	86.4		
2	9.8	11.4	12.5	13.7	15.2	17.1	19.6	22.9	27.4	34.3	45.7	57.1	68.6	85.7	
3	7.8	9.0	9.9	10.9	12.1	13.6	15.5	18.1	21.7	27.1	36.2	45.2	54.3	67.9	
4	6.2	7.2	7.9	8.6	9.6	10.8	12.3	14.4	17.3	21.6	28.8	36.0	43.2	54.0	86.4
6		4.5	4.9	5.4	6.0	6.8	7.7	9.0	10.8	13.5	18.1	22.6	27.1	33.9	54.2
8				3.4	3.8	4.3	4.9	5.7	6.8	8.5	11.4	14.2	17.1	21.4	34.2
10							3.1	3.6	4.3	5.4	7.2	8.9	10.7	13.4	21.5
12									2.7	3.4	4.5	5.6	6.7	8.4	13.4
14										2.1	2.8	3.5	4.2	5.3	8.5
16												2.2	2.7	3.3	5.3

Table 17: Maximum 1-way Distance (Feet), 2% Voltage Drop Chart for 75°C or 90°C StrandedCopper Wire, 12-Volt System

B.2 Voltage Drop Chart for 75°C or 90°C Stranded Copper Wire (Meters), 12 Volt System

For 24- or 48-volt systems multiply the values in Table 18 by:

- 2 for 24-volt systems
- 4 for 48-volt systems

				500	anaca	COPP		16, 12	Voit 5	ysten					
Wire								Amps							
Size (mm ²)	70	60	55	50	45	40	35	30	25	20	15	12	10	8	5
95	8.0	9.3	10.2	11.2	12.5	14.0	16.0	18.7	22.4	28.0					
70	5.8	6.8	7.4	8.1	9.0	10.2	11.6	13.6	16.3	20.3	27.1				
50	4.0	4.7	5.1	5.6	6.3	7.0	8.0	9.4	11.3	14.1	18.8	23.5	28.2		
35	3.0	3.5	3.8	4.2	4.6	5.2	6.0	6.9	8.3	10.4	13.9	17.4	20.8	26.0	
25	2.1	2.5	2.7	3.0	3.3	3.8	4.3	5.0	6.0	7.5	10.0	12.5	15.0	18.8	30.0
16	1.4	1.6	1.7	1.9	2.1	2.4	2.7	3.2	3.8	4.8	6.3	7.9	9.5	11.9	19.0
10		1.0	1.1	1.2	1.3	1.5	1.7	2.0	2.4	3.0	4.0	5.0	6.0	7.5	11.9
6				0.7	0.8	0.9	1.0	1.2	1.4	1.8	2.4	3.0	3.6	4.4	7.1
4						0.6	0.7	0.8	0.9	1.2	1.6	2.0	2.4	3.0	4.7
2.5								0.5	0.6	0.7	1.0	1.2	1.5	1.8	2.9
1.5												0.6	0.7	0.9	1.6

Table 18: Maximum 1-way Distance (Meters), 2% Voltage Drop Chart for 75°C or 90°CStranded Copper Wire, 12-Volt System

APPENDIX C: WARRANTY

The SureSine[™] inverters are warrantied to be free from defects in materials and workmanship for a period of FIVE (5) years from the date of shipment to the original end user. Warranty on replaced units or field-replaced components, will be limited only to the duration of the original product coverage.

Morningstar will, at its option, repair or replace any such defective unit.

C.1 Claim Procedure

Before requesting warranty service, check the operator's manual, including any troubleshooting section, to verify product failure.

To begin the warranty replacement process, contact your authorized Morningstar distributor or dealer for assistance with troubleshooting and, if necessary, obtaining an Return Material Authorization (RMA) number.

An RMA number must be issued by Morningstar prior to return of any unit(s) under this warranty. Required RMA information:

- (A) purchase location business or company name and date
- (B) full model and serial numbers (SN is 8-digits on unit bar label)
- (C) failure behavior, including LED indications
- (D) array configuration, panel Pmax, Voc, Vmp, Isc, and nominal battery voltage; these specifications are needed to receive assistance.
- (E) multi-meter available (for field troubleshooting)

If the dealer is contacted, and is not able to assist with warranty claim, contact Morningstar Tech support at support@morningstarcorp.com. Provide proof of date and place of purchase, and all details listed in preceding paragraph.

C.2 Warranty Exclusions And Limitations

This warranty does not apply under the following conditions:

- Damage by accident, negligence, abuse or improper use
- PV or load currents exceeding the ratings of the product
- Unauthorized product modification or attempted repair
- Damage occurring during shipment
- Damage resulting from acts of nature such as lightning, weather extremes, or infestation

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, EXPRESS OR IMPLIED. MORNINGSTAR SPECIFICALLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No Morningstar distributor, agent or employee is authorized to make any modification or extension to this warranty.

MORNINGSTAR IS NOT RESPONSIBLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DOWN-TIME, GOODWILL OR DAMAGE TO EQUIPMENT OR PROPERTY.

Index

Α

AC circuit breaker/fuse ratings AC Connections		
AC neutral ground bond		
AC Neutral-Ground Bond	19,	20
AC Output LED		30
AC Output Mode Switch	30,	31
Operation		31
AC Output Wire Size		19
AC Over-current Protection Device Sizing		18
AC Wiring	28,	29
Auxiliary Power		15

В

Batteries 7
Battery Bank 7
Battery Over-current Protection Device Sizing 17
Battery Status 1
Battery Systems 23
Battery Types 1, 7
Battery Voltage 7
Battery Wire Sizing 47
Bluetooth 1, 33
Bluetooth Activation

С

Chassis Ground	19,	22
Communication Options	1,	33
Bluetooth		34
EIA-485 Device		37
Modbus		36
MS-CAN		40
USB Port		39
Components		
150 W & 300 W Models		2
700 W to 2,500 W Models	3	8,4
Critical Fault		32

D

DC Connections	23
150 W & 300 W Models	
Negative Grounding	25
Positive Grounding	25
700 W to 2,500 W Models	
Negative Grounding	26
Positive Grounding	26
DC Ground Bond	19

DC System Ground DC Voltage Drop DC Voltage Requirements DC Wiring	49 7
Dimensions	21
150 W & 300 W Models	5
700 W to 2,500 W Models	6
DIP Switch	1
Configuration Options	12
Location	11

Ε

EIA-485	1,	33
Electronic Protections		1
Ethernet	1,	36

F

fault	27
Fault Recovery	1
Firmware Update	

G

GFDI	27
Ground Connections	21
Chassis Ground	22
DC System Ground	22
Negative Grounding	24
Positive Grounding	24
Grounding and Bonding	19
Ground Wire, Minimum Size	22

Н

Hardware, Additional	7
High Temperature Disconnect	32
High Voltage Disconnect	32

L

LED Indications	30
LEDs 1,	30
Low Voltage Disconnect	31

Μ

Modbus ID		36
Modbus Map		36
Mounting		8
Orientation		8
MS-CAN	1, 33,	40

Ν

Negative Grounding		24
Neutral-Ground Bond	20,	22
Neutral-Ground Jumper		20

0

Output Mode	31
Output Voltages	. 1
Over Current Fault	32
Over-current Protection Sizing	17

Ρ

Positive Grounding	24
Power Up	

R

Remote Switch	7
Remote Switch Installation	14
RSC-1 Serial-to-EIA-485 Adapter	37

S

Safety Definitions		
Cautions		С
Notes		С
Warnings		С
Safety Information		С
Settings		11
Short Circuit Protection		32
Specifications		
1,250 and 2,500 W		45
150 W & 300 W		43
700 W & 1,000 W Models		44
Common		46
Status LED		30
Stranded Copper Wire	49,	50
SureSine Utility App		
surge		27

Т

TCP/IP	36
Terminal Torque	16
Tools Required	7

U

USB	Data	Port	33
USB	Port .		39

V

Voltage Dro	p	49,	50
-------------	---	-----	----

W

Warranty	51
Claim Procedure	51
Exclusions And Limitations	51
RMA	51
Wire Sizing Requirements	28

Notes:

